Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
Kết luận: GTNN của P là 3/4; P không có GTLN.
Giải: P là một giá trị của hàm số đã cho khi và chỉ khi tồn tại x để \(P=\frac{x^2+x+1}{x^2+2x+1}\) (1), tức là phương trình (1) ẩn x phải có nghiệm.
Ta có \(\left(1\right)\Leftrightarrow P\left(x^2+2x+1\right)=x^2+x+1\)\(\Leftrightarrow\left(P-1\right)x^2+\left(2P-1\right)x+\left(P-1\right)=0\).
Nếu \(P=1\) thì (1) trở thành \(x=0\), phương trình có nghiệm x = 0.
Nếu \(P\ne1\) thì phương trình sẽ có nghiệm khi và chỉ khi
\(\Delta=\left(2P-1\right)^2-4\left(P-1\right)^2=4P-3\ge0\Leftrightarrow P\ge\frac{3}{4}\)
Vậy tập giá trị của P là \(\frac{3}{4}\le P< +\infty\). Do đó P không có GTLN và P có GTNN = \(\frac{3}{4}\)
\(P=\frac{x^2+x+1}{x^2+2x+1}=\frac{\frac{3}{4}\left(x^2+2x+1\right)+\frac{\left(x^2-2x+1\right)}{4}}{x^2+2x+1}\)
\(=\frac{3}{4}+\frac{\left(x-1\right)^2}{4\left(x+1\right)^2}\ge\frac{3}{4}\)
Dấu = xảy ra khi \(x=1\)
Đặt \(y=\frac{3x^2+2x+1}{x^2-2x+3}\Rightarrow y.x^2-2yx+3y=3x^2+2x+1\)
\(\Leftrightarrow\left(y-3\right)x^2-2\left(y+1\right)x+3y-1=0\)
\(\Delta'=\left(y+1\right)^2-\left(y-3\right)\left(3y+1\right)\ge0\)
\(\Leftrightarrow-y^2+5y+2\ge0\)
\(\Rightarrow\frac{5-\sqrt{33}}{2}\le y\le\frac{5+\sqrt{33}}{2}\)
+ D = x/(x2+1) = [1/2(x+1)2-1/2(x2+1)]/(x2+1) >=-1/2
=> MinD=-1/2 khi x = -1
+ D = x/(x2+1) = [-1/2(x-1)2+1/2(x2+1)]/(x2+1) <=1/2
=>MaxD=1/2 khi x = 1
\(A=\frac{2x+1}{x^2+2}\)
a)Tìm GTLN.
với x=0 có A=1/2 với x khác 0 chia cả tử mẫu cho x^2 ; đặt 1/x=y ta có
\(A=\frac{2x+1}{x^2+2}=\frac{\frac{2}{x}+\frac{1}{x^2}}{1+\frac{2}{x^2}}=\frac{2y+y^2}{1+2y^2}=\frac{2y^2+1-y^2+2y-1}{2y^2+1}=\frac{\left(2y^2+1\right)-\left(y^2-2y+1\right)}{2y^2+1}=1-\frac{\left(y-1\right)^2}{2y^2+1}\)
\(A=\frac{2x+1}{x^2+2}=1-\frac{\left(y-1\right)^2}{2y^2+1}\le1\) đẳng thức khi y=1=> x=1 (*)=> GTLN(A)=1
b) tìm GTNN.
\(A+\frac{1}{2}=\frac{2x+1}{x^2+2}+\frac{1}{2}=\frac{2\left(2x+1\right)+\left(x^2+2\right)}{x^2+2}=\frac{x^2-4x+4}{x^2+2}=\frac{\left(x-2\right)^2}{x^2+2}\ge0\)
\(A+\frac{1}{2}\ge0\Rightarrow A\ge-\frac{1}{2}\) đẳng thức khi x=2 (**)=> GTNN (A)=-1/2
Từ (*)&(**) ta có \(-\frac{1}{2}\le A\le1\)
p/s: mình cố tình (a)&(b) với hai cách khác nhau cho bạn lựa chọn
\(P=\frac{4x+2}{2\left(x^2+2\right)}=\frac{-\left(x^2+2\right)+\left(x^2+4x+4\right)}{2\left(x^2+2\right)}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge-\frac{1}{2}\)
\(P_{min}=-\frac{1}{2}\) khi \(x=-2\)
\(P=\frac{x^2+2-\left(x^2-2x+1\right)}{x^2+2}=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)
\(P_{max}=1\) khi \(x=1\)
\(M=\frac{2x+1}{x^2+2}\Leftrightarrow Mx^2+2M=2x+1\)
\(\Leftrightarrow Mx^2+2M-2x-1=0\)
\(\Leftrightarrow Mx^2-2x+\left(2M-1\right)=0\)
\(\Delta'=1-M\left(2M-1\right)\ge0\Leftrightarrow1-2M^2+M\ge0\)
\(\Leftrightarrow\left(1-M\right)\left(1+2M\right)\ge0\)
\(\Rightarrow\frac{-1}{2}\le M\le1\)
Vậy...
Tìm \(MAX\)
Ta có: \(\frac{2x+1}{x^2+2}=\frac{x^2+2-x^2+2x-1}{x^2+2}\)
\(=1-\frac{\left(x-1\right)^2}{x^2+2}\le1\)
Dấu "=" xảy ra khi \(\Leftrightarrow-\frac{\left(x-1\right)^2}{x^2+2}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy GTLN của biểu thức là \(1\) tại \(x=1\)
Tìm \(MIN\)
Ta có: \(1-\frac{\left(x-1\right)^2}{x^2+2}=-\frac{1}{2}+\frac{3}{2}-\frac{\left(x-1\right)^2}{x^2+2}\)
\(=-\frac{1}{2}+\frac{3x^2+6-2x^2+4x-2}{2\left(x^2+2\right)}\)
\(=-\frac{1}{2}+\frac{x^2+4x+4}{2\left(x^2+2\right)}=-\frac{1}{2}+\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}\ge-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{\left(x+2\right)^2}{2\left(x^2+2\right)}=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy GTNN của biểu thức là \(-\frac{1}{2}\) tại \(x=-2\)