Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= 9x^2 + 12x -5
= (3x)^2 + 2.3.2x + 4 -4 -5
=(9x^2 + 2.3.2x + 4) -9
= (3x+2)^2 -9
min p = -9 => (3x+2)^2 = 0
=> x= -2/3
max p = -9 => x= -2/3
A+1=(27-12x)/(x^2+9)+1
A+1=(x^2-12x+36)/(x^2+9)
A+1=(x-6)^2/(x^2+9)>=0
Min A+1=0
Min A=-1
Dấu = xảy ra khi và chỉ khi x=6
4-A=4-(27-12x)/(x^2+9)
4-A=(4x^2+36-27+12x)/(x^2+9)
4-A=(4x^2+12x+9)/(x^2+9)
4-A=(2x+3)^2/(x^2+9)
A=4-(2x+3)^2/(x^2+9)<=4
Max A=4
Dấu = xảy ra khi và chỉ khi x=-3/2
bn lên ngạng hoặc và xem câu hỏi tương tự nha!
Nhớ k mk đấy nha!
thanks nhìu!
OK..OK..OK
1/ \(A=4x^2-12x+15=\left(2x\right)^2-2.3.2x+3^2+6=\left(2x-3\right)^2+6\ge6\)
Đẳng thức xảy ra khi: \(2x-3=0\Rightarrow2x=3\Rightarrow x=3:2\Rightarrow x=1,5\)
Vậy giá trị nhỏ nhất của A là 6 khi x = 1,5
2a/ \(B=-x^2+4x+4=-\left(x^2-4x-4\right)=-\left(x^2-2.2x+2^2-8\right)=-\left[\left(x-2\right)^2-8\right]\)
\(\Rightarrow B=-\left(x-2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(x-2=0\Rightarrow x=2\)
Vậy giá trị lớn nhất của B là 8 khi x = 2
2b/ \(C=4-16x^2-8x=-16x^2-8x+4=-\left(16x^2+8x-4\right)=-\left[\left(4x\right)^2+2.4x+1-5\right]\)
\(\Rightarrow C=-\left[\left(4x+1\right)^2-5\right]=-\left(4x+1\right)^2+5\le5\)
Đẳng thức xảy ra khi: 4x + 1 = 0 => x = -0,25
Vậy giá trị lớn nhất của C là 5 khi x = -0,25
\(P=9x^2+12x-5\)
\(=9x^2+12x+4-9\)
\(=\left(3x+2\right)^2-9\ge-9\)
Dấu " = " khi \(\left(3x+2\right)^2=0\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(MIN_P=-9\) khi \(x=\dfrac{-2}{3}\)
b, sai đề
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
\(A=\frac{2x^2-16x+33}{x^2-8x+17}=\frac{2\left(x^2-8x+17\right)-1}{x^2-8x+17}=2-\frac{1}{x^2-8x+17}\)
để A nhỏ nhất => \(\frac{1}{x^2-8x+17}\) lớn nhất
\(x^2-8x+17=\left(x-4\right)^2+1\ge1\)=> \(\frac{1}{x^2-8x+17}\le\frac{1}{1}=1\)
=> A ≥ 2 - 1 = 1
dấu ''='' xảy ra khi x = 4