K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2019

+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)

\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)

Cộng theo vế ta được :

\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)

Dấu " = " xảy ra \(\Leftrightarrow x=6\)

Chúc bạn học tốt !!!

Đã từng lm qua nhưng ko chắc á 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXD\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max A2=4 => Max A=2 khi x=2 

31 tháng 7 2019

tui đã hỉu 

cam on Kid 

có dịp giúp á á á 

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

21 tháng 1 2017

\(A=x\sqrt{9-x^2}\le\frac{x^2+9-x^2}{2}=4,5\)

23 tháng 1 2017

cho mình xin cái công thức dạng bài này được ko ak

16 tháng 2 2018

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXĐ:\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô-si ta có :

\(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu  =  xảy ra \(\Leftrightarrow\)\(3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max \(A^2=4\)suy ra Max A = 2 khi x = 2 

16 tháng 2 2018

sửa lại đề 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

thông cảm nha

\(A=\dfrac{\sqrt{x-9}}{5x}\left(ĐKx\ge9\right)\)

A'=\(\dfrac{\dfrac{5x}{2\sqrt{x-9}}-5\sqrt{x-9}}{\left(5x^2\right)}\)

\(A'=0\rightarrow5x=10\left(x-9\right)\)

            \(\rightarrow x=18\)

\(MaxA=\dfrac{1}{30}\) khi \(x=18\)

NV
6 tháng 8 2021

\(A=\dfrac{2.3\sqrt{x-9}}{30x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(\sqrt{x-9}=3\Leftrightarrow x=18\)

26 tháng 8 2020

Đặt \(a=\sqrt[3]{9+4\sqrt{5}},b=\sqrt[3]{9-4\sqrt{5}}\)

\(\Rightarrow\hept{\begin{cases}a+b=x\\ab=1\end{cases}}\)

Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow x^3=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3.1.x\)

\(\Leftrightarrow x^3=18+3x\)

\(\Leftrightarrow x^3-3x-18=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+3x+6\right)=0\)

Vì \(x^2+3x+6=\left(x+\frac{3}{2}\right)^2+\frac{15}{4}>0\)

\(\Rightarrow x-3=0\Leftrightarrow x=3\)

Thay x=3 vào \(x^5-3x-18=0\), thấy không thoả mãn.

KL: Đề sai !

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.

18 tháng 12 2017

ĐK để y xác định: \(\hept{\begin{cases}x-1996\ge0\\1998-x\ge0\end{cases}}\Leftrightarrow1996\le x\le1998\)

Áp dụng BDT bunhiacopxki ta đc:.....