K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đã từng lm qua nhưng ko chắc á 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXD\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max A2=4 => Max A=2 khi x=2 

31 tháng 7 2019

tui đã hỉu 

cam on Kid 

có dịp giúp á á á 

27 tháng 7 2016

    (3x - 5) (7 - 5x) - (5x + 2) (2 - 3x) = 4

<=> 21x - 15x2 - 35 + 25x - 10x + 15x2 - 4 + 6x = 4

<=>  42x - 39 = 4

<=> 42x = 43

<=> x = 43/42

16 tháng 2 2018

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

\(ĐKXĐ:\)\(\frac{5}{3}\le x\le\frac{7}{3}\)

\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)

Áp dụng BĐT Cô-si ta có :

\(A^2\le2+\left(3x-5+7-3x\right)=4\)

Dấu  =  xảy ra \(\Leftrightarrow\)\(3x-5=7-3x\Leftrightarrow x=2\)

Vậy Max \(A^2=4\)suy ra Max A = 2 khi x = 2 

16 tháng 2 2018

sửa lại đề 

\(A=\sqrt{3x-5}+\sqrt{7-3x}\)

thông cảm nha

b: \(N=a^3-3a^2-a\left(3-a\right)\)

\(=a^2\left(a-3\right)+a\left(a-3\right)\)

\(=a\left(a-3\right)\left(a+1\right)\)

24 tháng 9 2021

a) M = x2 (x + y) - x2y - x3 tại x = - 2017 và y = 2017

 M=  \(x^3+x^2y-x^2y-x^3\)

M = 0

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Câu 1:

Tìm max:

Áp dụng BĐT Bunhiacopxky ta có:

\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)

\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)

Vậy \(y_{\max}=10\)

Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)

Tìm min:

Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Chứng minh:

\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)

\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).

Dấu "=" xảy ra khi $ab=0$

--------------------

Áp dụng bổ đề trên vào bài toán ta có:

\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)

\(\sqrt{5-x}\geq 0\)

\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)

Vậy $y_{\min}=6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)

AH
Akai Haruma
Giáo viên
4 tháng 3 2019

Bài 2:

\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)

Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:

\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)

Vậy \(A_{\min}=3989\)

Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)

25 tháng 9 2019

+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)

\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)

Cộng theo vế ta được :

\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)

Dấu " = " xảy ra \(\Leftrightarrow x=6\)

Chúc bạn học tốt !!!

11 tháng 12 2021

3x(x+2)

11 tháng 12 2021

MTC:3.x(x+2)

NV
23 tháng 4 2022

ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)

\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)

\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)

\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)

\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)

\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)

24 tháng 4 2022

-Em cảm ơn thầy nhiều ạ! 

28 tháng 8 2021

\(E=-3x^2-6x+5\)

\(=-3\left(x^2+2x-\frac{5}{3}\right)\)

\(=-3\left(x^2+2x+1\right)+8\)

\(=-3\left(x+1\right)^2+8\le8\forall x\)

Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

28 tháng 8 2021

\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)

\(=-3\left(x+1\right)^2+8\le8\)

Dấu ''='' xảy ra khi x = -1

Vậy GTLN của E bằng 8 tại x = -1 

18 tháng 7 2017

A = 3 - 2(3x+1)

    = 3 - 6x -2

    = 1 - 6x

max A = 1 khi x = 0