Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(3x - 5) (7 - 5x) - (5x + 2) (2 - 3x) = 4
<=> 21x - 15x2 - 35 + 25x - 10x + 15x2 - 4 + 6x = 4
<=> 42x - 39 = 4
<=> 42x = 43
<=> x = 43/42
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXĐ:\)\(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô-si ta có :
\(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu = xảy ra \(\Leftrightarrow\)\(3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max \(A^2=4\)suy ra Max A = 2 khi x = 2
b: \(N=a^3-3a^2-a\left(3-a\right)\)
\(=a^2\left(a-3\right)+a\left(a-3\right)\)
\(=a\left(a-3\right)\left(a+1\right)\)
Câu 1:
Tìm max:
Áp dụng BĐT Bunhiacopxky ta có:
\(y^2=(3\sqrt{x-1}+4\sqrt{5-x})^2\leq (3^2+4^2)(x-1+5-x)\)
\(\Rightarrow y^2\leq 100\Rightarrow y\leq 10\)
Vậy \(y_{\max}=10\)
Dấu đẳng thức xảy ra khi \(\frac{\sqrt{x-1}}{3}=\frac{\sqrt{5-x}}{4}\Leftrightarrow x=\frac{61}{25}\)
Tìm min:
Ta có bổ đề sau: Với $a,b\geq 0$ thì \(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
Chứng minh:
\(\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{b})^2\geq a+b\)
\(\Leftrightarrow \sqrt{ab}\geq 0\) (luôn đúng).
Dấu "=" xảy ra khi $ab=0$
--------------------
Áp dụng bổ đề trên vào bài toán ta có:
\(\sqrt{x-1}+\sqrt{5-x}\geq \sqrt{(x-1)+(5-x)}=2\)
\(\sqrt{5-x}\geq 0\)
\(\Rightarrow y=3(\sqrt{x-1}+\sqrt{5-x})+\sqrt{5-x}\geq 3.2+0=6\)
Vậy $y_{\min}=6$
Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-1)(5-x)=0\\ 5-x=0\end{matrix}\right.\Leftrightarrow x=5\)
Bài 2:
\(A=\sqrt{(x-1994)^2}+\sqrt{(x+1995)^2}=|x-1994|+|x+1995|\)
Áp dụng BĐT dạng \(|a|+|b|\geq |a+b|\) ta có:
\(A=|x-1994|+|x+1995|=|1994-x|+|x+1995|\geq |1994-x+x+1995|=3989\)
Vậy \(A_{\min}=3989\)
Đẳng thức xảy ra khi \((1994-x)(x+1995)\geq 0\Leftrightarrow -1995\leq x\leq 1994\)
+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)
\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)
Cộng theo vế ta được :
\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)
Dấu " = " xảy ra \(\Leftrightarrow x=6\)
Chúc bạn học tốt !!!
ĐKXĐ: \(\dfrac{3}{2}\le x\le3\)
\(A=\sqrt{2x-3}+\sqrt{6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\)
\(A\ge\sqrt{2x-3+6-2x}+\left(2-\sqrt{2}\right)\sqrt{3-x}\ge\sqrt{3}\)
\(A_{min}=\sqrt{3}\) khi \(3-x=0\Rightarrow x=3\)
\(A=1.\sqrt{2x-3}+\sqrt{2}.\sqrt{6-2x}\le\sqrt{\left(1+2\right)\left(2x-3+6-2x\right)}=3\)
\(A_{max}=3\) khi \(2x-3=\dfrac{6-2x}{2}\Rightarrow x=2\)
\(E=-3x^2-6x+5\)
\(=-3\left(x^2+2x-\frac{5}{3}\right)\)
\(=-3\left(x^2+2x+1\right)+8\)
\(=-3\left(x+1\right)^2+8\le8\forall x\)
Dau '' = '' xay ra va chi \(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
\(E=-3x^2-6x+5=-3\left(x^2+2x+1-1\right)+5\)
\(=-3\left(x+1\right)^2+8\le8\)
Dấu ''='' xảy ra khi x = -1
Vậy GTLN của E bằng 8 tại x = -1
Đã từng lm qua nhưng ko chắc á
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(ĐKXD\): \(\frac{5}{3}\le x\le\frac{7}{3}\)
\(A^2=3x-5+7-3x+2\sqrt{\left(3x-5\right)\left(7-3x\right)}\)
Áp dụng BĐT Cô - si Ta có : \(A^2\le2+\left(3x-5+7-3x\right)=4\)
Dấu ''='' xãy ra \(\Leftrightarrow3x-5=7-3x\Leftrightarrow x=2\)
Vậy Max A2=4 => Max A=2 khi x=2
tui đã hỉu
cam on Kid
có dịp giúp á á á