K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

mk ko bt 123

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

15 tháng 11 2019

\(ĐK:1-x-2x^2\ge0\)

Ta có:

Min

\(B=\frac{x}{2}+\sqrt{1-x-2x^2}=\left(\sqrt{x+1}+\frac{\sqrt{1-2x}}{2}\right)^2-\frac{5}{4}\text{ }\ge-\frac{5}{4}\)

Dau '='' xay ra khi \(x=-\frac{1}{2}\)

Max

Ta có:

\(B=\frac{x}{2}+\sqrt{1-x-2x^2}=\frac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\frac{x}{2}+\frac{2-x}{2}=1\)

Da '=' xay ra khi \(x=0\)

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)