K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2019

\(ĐK:1-x-2x^2\ge0\)

Ta có:

Min

\(B=\frac{x}{2}+\sqrt{1-x-2x^2}=\left(\sqrt{x+1}+\frac{\sqrt{1-2x}}{2}\right)^2-\frac{5}{4}\text{ }\ge-\frac{5}{4}\)

Dau '='' xay ra khi \(x=-\frac{1}{2}\)

Max

Ta có:

\(B=\frac{x}{2}+\sqrt{1-x-2x^2}=\frac{x}{2}+\sqrt{\left(x+1\right)\left(1-2x\right)}\le\frac{x}{2}+\frac{2-x}{2}=1\)

Da '=' xay ra khi \(x=0\)

24 tháng 10 2017

mk ko bt 123

26 tháng 5 2019

\(M=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{2x+2\sqrt{x}+3\sqrt{x}+3}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\left[\frac{\sqrt{x}\left(2\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+3\right)}+\frac{2}{\sqrt{x}+1}\right].\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}+1}.\frac{\sqrt{x}+2018}{\sqrt{x}+2}\)

\(=\frac{\sqrt{x}+2018}{\sqrt{x}+1}\)

\(\frac{\sqrt{x}+2018}{\sqrt{x}+1}=1+\frac{2017}{\sqrt{x}+1}\le2018\)

Dấu "=" xảy ra \(\Leftrightarrow\)

... 

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

18 tháng 11 2019

a) \(x\ge0\)đặt \(\sqrt{x}=a\ge0\)

\(A=\frac{2a}{a^2-a+1}\Leftrightarrow A.a^2+A-2a=0\Leftrightarrow A.a^2-\left(A+2\right)a+A=0\)

\(\Delta=\left(A+2\right)^2-4A^2=-3A^2+4A+4\ge0\Rightarrow A\le2\)

\(\Rightarrow A_{max}=2\) khi  \(x=1\)

b) 

\(x\ge0\)

\(B=-\left(x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)-\frac{7}{4}=-\left(\sqrt{x-\frac{1}{2}}\right)^2-\frac{7}{4}\le\frac{-7}{4}\)

\(\Rightarrow B_{max}=\frac{-7}{4}\) khi \(\sqrt{x=}\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

c) \(x\ge0\)

\(C=-2+\sqrt{x}-1=-2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}\right)-\frac{7}{8}\)

\(C=-2\left(\sqrt{x}-\frac{1}{4}\right)^2\frac{7}{8}\le\frac{-7}{8}\)

\(C_{max}=\frac{-7}{8}\)khi đó \(x=\frac{1}{16}\)