K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2016

\(A=5-\left(x^2+2\right)^2-\left(y-1\right)^2\le5\)

Amax =5

25 tháng 12 2016

A=-x2-4x-4-y2+2y-1+5

A=-(x+2)2-(y-1)2+5

A=-((x+2)2+(y-1)2)+5

MaxA=5

27 tháng 8 2023

\(\left\{{}\begin{matrix}4x^2+9y^2=9\\A=x-2y+3\end{matrix}\right.\)

Áp dụng bất đẳng thức Bunhiacopxki cho các cặp số \(\left(\dfrac{1}{2};2x\right);\left(-\dfrac{2}{3};3y\right)\)

\(x-2y=\dfrac{1}{2}.x+\left(-\dfrac{2}{3}\right).3y\)

\(\Rightarrow\left[\dfrac{1}{2}.2x+\left(-\dfrac{2}{3}\right).3y\right]^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=\dfrac{25}{36}.9\)

\(\Rightarrow x-2y\le\dfrac{5}{6}.3=\dfrac{5}{2}\)

\(\Rightarrow A=x-2y+3\le\dfrac{5}{2}+3\)

\(\Rightarrow A=x-2y+3\le\dfrac{11}{2}\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{\dfrac{1}{2}}{2x}=\dfrac{-\dfrac{2}{3}}{3y}\)

\(\Rightarrow\dfrac{2x}{\dfrac{1}{2}}=\dfrac{3y}{-\dfrac{2}{3}}\)

\(\Rightarrow\dfrac{4x^2}{\dfrac{1}{4}}=\dfrac{9y^2}{\dfrac{4}{9}}=\dfrac{4x^2+9y^2}{\dfrac{1}{4}+\dfrac{4}{9}}=\dfrac{9}{\dfrac{25}{36}}=\dfrac{9.36}{25}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{9.36}{25}.\dfrac{1}{16}\\y^2=\dfrac{9.36}{25}.\dfrac{4}{36}=\dfrac{9.4}{25}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.6}{5}.\dfrac{1}{4}=\dfrac{9}{10}\\y=\dfrac{3.2}{5}=\dfrac{6}{5}\end{matrix}\right.\)

Vậy \(GTLN\left(A\right)=\dfrac{11}{2}\left(tạix=\dfrac{9}{10};y=\dfrac{6}{5}\right)\)

2 tháng 8 2021

Ta có:

D=2x2+3y2+4xy−8x−2y+18C=2x2+3y2+4xy−8x−2y+18

D=2(x2+2xy+y2)+y2−8x−2y+18C=2(x2+2xy+y2)+y2−8x−2y+18

D=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1C=2[(x+y)2−4(x+y)+4]+(y2+6y+9)+1

D=2(x+y−2)2+(y+3)2+1≥1C=2(x+y−2)2+(y+3)2+1≥1

Dấu "=" xảy ra ⇔x+y=2⇔x+y=2và y=−3y=−3

Hay x = 5 , y = -3

Đc chx bạn

2 tháng 8 2021