K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2016

Đề bị sai?

3 tháng 2 2019

AP DUNG BDT CAUCHY-SCHWAR :  \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)(DAU "=" XAY RA KHI \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\))

3 tháng 2 2019

...Cauchy-Schwarz: 

\(Q\ge\frac{\left(1+2+3\right)^2}{x+y+z}=\frac{36}{1}=36\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+z=1\\\frac{1}{x}=\frac{2}{y}=\frac{3}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=y\\3y=2z\\z=3x\end{cases}}\)

Giải tiếp t cái dấu = :v

6 tháng 8 2018

\(y=\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\) Điều kiện: \(x\ge2\)

\(\Rightarrow2y=2.\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+2.\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\)

\(=\sqrt{x^2+4\sqrt{x^2-4}}+\sqrt{x^2-4\sqrt{x^2-4}}\)

\(=\sqrt{x^2-4+4\sqrt{x^2-4}+4}+\sqrt{x^2-4-4\sqrt{x^2-4}+4}\)

\(=\sqrt{\left(\sqrt{x^2-4}+2\right)^2}+\sqrt{\left(\sqrt{x^2-4}-2\right)^2}\)

\(=\left|\sqrt{x^2-4}+2\right|+\left|\sqrt{x^2-4}-2\right|\)

\(=\sqrt{x^2-4}+2+\left|\sqrt{x^2-4}-2\right|\)(1)

TH1: \(\sqrt{x^2-4}-2\ge0\Rightarrow\sqrt{x^2-4}\ge2\Rightarrow x^2-4\ge4\Rightarrow x\ge2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2+\sqrt{x^2-4}-2=2\sqrt{x^2-4}\)

Do \(x\ge2\sqrt{2}\Rightarrow2\sqrt{x^2-4}\ge2\sqrt{\left(2\sqrt{2}\right)^2-4}=4\)

TH2:  \(\sqrt{x^2-4}-2< 0\Rightarrow\sqrt{x^2-4}< 2\Rightarrow x^2-4< 4\Rightarrow x^2< 8\Rightarrow2\le x< 2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2-\sqrt{x^2-4}+2=4\)

Vậy GTNN của y bằng 4.

Dấu "=" xảy ra khi \(2\le x\le2\sqrt{2}\)

22 tháng 2 2019

giải đi ?

22 tháng 2 2019

Áp dụng bất đẳng thức Cô-si ta có : 

\(P=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}\)

                                                       \(=\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{xy}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{xy}}\)

                                                                                            \(\ge\frac{2\sqrt{\sqrt{x}.\sqrt{y}}\left(x+y-\frac{x+y}{2}\right)}{\sqrt{xy}}\)

                                                                                            \(=\frac{x+y}{\sqrt[4]{xy}}\ge\frac{x+y}{\sqrt{\frac{x+y}{2}}}=\frac{1}{\sqrt{\frac{1}{2}}}=\sqrt{2}\)

Dấu "=" khi x = y = 1/2

29 tháng 7 2021

I) Đk: x > 0 và x \(\ne\)9

\(D=\left(\frac{x+3}{x-9}+\frac{1}{\sqrt{x}+3}\right):\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(D=\frac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}}\)

\(D=\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}+3}\)

=> \(\frac{1}{D}=\frac{\sqrt{x}+3}{\sqrt{x}+1}=\frac{\sqrt{x}+1+2}{\sqrt{x}+1}=1+\frac{2}{\sqrt{x}+1}\)

Để 1/D nguyên <=> \(\frac{2}{\sqrt{x}+1}\in Z\)

<=> \(2⋮\left(\sqrt{x}+1\right)\) <=> \(\sqrt{x}+1\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

Do \(x>0\) => \(\sqrt{x}+1>1\) => \(\sqrt{x}+1=2\)

<=> \(\sqrt{x}=1\) <=> x = 1 (tm)

29 tháng 7 2021

\(E=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(E=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Với x\(\ge\)0; ta có:

\(E=\frac{8}{9}\) <=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+2\)

<=> \(2x-4\sqrt{x}-\sqrt{x}+2=0\)

<=> \(\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

<=> \(\orbr{\begin{cases}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

e) Ta có: \(E=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\ge0\forall x\in R\) (vì \(x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\))

Dấu "=" xảy ra<=> x = 0

Vậy MinE = 0 <=> x = 0

Lại có: \(\frac{1}{E}=\frac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}-1+\frac{1}{\sqrt{x}}\right)\ge\frac{3}{4}\left(2\sqrt{\sqrt{x}\cdot\frac{1}{\sqrt{x}}}-1\right)\)(bđt cosi)

=> \(\frac{1}{E}\ge\frac{3}{2}.\left(2-1\right)=\frac{3}{2}\)=> \(E\le\frac{2}{3}\)

Dấu "=" xảy ra<=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\) <=> x = 1

Vậy MaxE = 2/3 <=> x = 1

DD
5 tháng 9 2021

\(A=3x+4y+\frac{5}{x}+\frac{9}{y}=\frac{5}{4}x+\frac{5}{x}+\frac{9}{4}y+\frac{9}{y}+\frac{7}{4}x+\frac{7}{4}y\)

\(\ge2\sqrt{\frac{5}{4}x.\frac{5}{x}}+2\sqrt{\frac{9}{4}y.\frac{9}{y}}+\frac{7}{4}.4\)

\(=5+9+7=21\)

Dấu \(=\)khi \(x=y=2\).