K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

\(y=\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\) Điều kiện: \(x\ge2\)

\(\Rightarrow2y=2.\sqrt{\frac{x^2}{4}+\sqrt{x^2-4}}+2.\sqrt{\frac{x^2}{4}-\sqrt{x^2-4}}\)

\(=\sqrt{x^2+4\sqrt{x^2-4}}+\sqrt{x^2-4\sqrt{x^2-4}}\)

\(=\sqrt{x^2-4+4\sqrt{x^2-4}+4}+\sqrt{x^2-4-4\sqrt{x^2-4}+4}\)

\(=\sqrt{\left(\sqrt{x^2-4}+2\right)^2}+\sqrt{\left(\sqrt{x^2-4}-2\right)^2}\)

\(=\left|\sqrt{x^2-4}+2\right|+\left|\sqrt{x^2-4}-2\right|\)

\(=\sqrt{x^2-4}+2+\left|\sqrt{x^2-4}-2\right|\)(1)

TH1: \(\sqrt{x^2-4}-2\ge0\Rightarrow\sqrt{x^2-4}\ge2\Rightarrow x^2-4\ge4\Rightarrow x\ge2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2+\sqrt{x^2-4}-2=2\sqrt{x^2-4}\)

Do \(x\ge2\sqrt{2}\Rightarrow2\sqrt{x^2-4}\ge2\sqrt{\left(2\sqrt{2}\right)^2-4}=4\)

TH2:  \(\sqrt{x^2-4}-2< 0\Rightarrow\sqrt{x^2-4}< 2\Rightarrow x^2-4< 4\Rightarrow x^2< 8\Rightarrow2\le x< 2\sqrt{2}\).Ta có:

\(\left(1\right)=\sqrt{x^2-4}+2-\sqrt{x^2-4}+2=4\)

Vậy GTNN của y bằng 4.

Dấu "=" xảy ra khi \(2\le x\le2\sqrt{2}\)

11 tháng 11 2019

Ko khó nếu bạn bt BĐT này

Áp dụng BĐT mincopxki 

=> M >= căn [(x+y)^2+(1/x+1/y)^2]

=> M >= căn {4^2+[4/(x+y)]^2} áp dụng cauchy schwarz

=> M >= căn {16+1} do x+y=4

=> M >= căn 17

''='' xảy ra <=> x=y; x+y=4 

<=> x=y=2 và M min = căn 17.

9 tháng 12 2020

a Để hàm số y đồng biến trên R 

thì k2+2/k-3 > 0  đk k khác 3 

mà k2+2>0 thì k-3 > 0 suy ra k>3

b Để hàm số Y đồng biến trên R

thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2

30 tháng 6 2020

\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)

\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)

\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)

\(=3+4+\frac{3}{2}=\frac{17}{2}\)

Dấu "=" xảy ra <=> x = 4 và y = 16

20 tháng 9 2019

khó quá đây là toán lớp mấy

19 tháng 9 2019

Bài 3:

Có:\(6=\frac{\left(\sqrt{2}\right)^2}{x}+\frac{\left(\sqrt{3}\right)^2}{y}\ge\frac{\left(\sqrt{2}+\sqrt{3}\right)^2}{x+y}\Rightarrow x+y\ge\frac{5+2\sqrt{6}}{6}\)

True?