K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Chọn D

16 tháng 8 2016

bn ơi câu a t chưa làm chưa biết nhưng câu b chắc chắn có Max tại x=-3 nhé !   Nếu bn chỉ tìm ra Min là chưa đủ 

 

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

9 tháng 1 2017

Chọn A.

Tập xác định:D= R. Ta có:y ‘= m-3 + (2m+1).sinx

Hàm số nghịch biến trên R

 

Trường hợp 1: m= -1/ 2 ; ta có  0 ≤ 7 2   ∀ x ∈ ℝ

Vậy hàm số luôn nghịch biến trên R.

Trường hợp 2: m< -1/ 2 ; ta có

 

 

Trường hợp 3:m > -1/2 ; ta có:

Vậy  - 4 ≤ m ≤ 2 3

 

3 tháng 8 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên ( π /2; 5 π /6] nên hàm số đạt cực tiểu tại x =  π /2 và f CT  = f( π /2) = 1

Mặt khác, f( π /3) = 2 3 , f(5 π /6) = 2

Vậy min f(x) = 1; max f(x) = 2

10 tháng 4 2019

f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2

15 tháng 3 2019

Đáp án: D.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trên khoảng (0; π /2), sin(x +  π /4) ≤ 1;

Dấu "=" xảy ra ⇔ x =  π /4

Suy ra giá trị nhỏ nhất của hàm số là min y = y( π /4) =  2 /2.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số