Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P=y^2+8y+15\)
\(P=y^2+2.y.4+16-1\)
\(P=\left(y+4\right)^2-1\)
Vì \(\left(y+4\right)^2\ge0\) với mọi y
\(\Rightarrow\left(y+4\right)^2-1\ge-1\) với mọi y
\(\Rightarrow Pmin=-1\Leftrightarrow y=-4\)
b) \(A=u^2+v^2-2u+3v+15\)
\(A=u^2-2u+1+v^2+2.v.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}+14\)
\(A=\left(u-1\right)^2+\left(v+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\)
Vì \(\left(u-1\right)^2\ge0\) với mọi u
\(\left(v+\dfrac{3}{2}\right)^2\ge0\) với mọi v
\(\Rightarrow\left(u-1\right)^2+\left(v+\dfrac{3}{2}\right)^2\ge0\) với mọi u,v
\(\Rightarrow\left(u-1\right)^2+\left(v+\dfrac{3}{2}\right)^2+\dfrac{47}{4}\ge\dfrac{47}{4}\)
\(\Rightarrow Amin=\dfrac{47}{4}\Leftrightarrow\left\{{}\begin{matrix}u=1\\v=-\dfrac{3}{2}\end{matrix}\right.\)
Bài 1:
a) \(M=x^2-3x+10=\left(x^2-3x+\frac{9}{4}\right)+\frac{31}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{31}{4}\ge\frac{31}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
KL:...
2. a. \(A=12a-4a^2+3=-4\left(a-\frac{3}{2}\right)^2+12\)
Vì \(\left(a-\frac{3}{2}\right)^2\ge0\forall a\)\(\Rightarrow-4\left(a-\frac{3}{2}\right)^2+3\le3\)
Dấu "=" xảy ra \(\Leftrightarrow-4\left(a-\frac{3}{2}\right)^2=0\Leftrightarrow a-\frac{3}{2}=0\Leftrightarrow a=\frac{3}{2}\)
Vậy Amax = 3 <=> a = 3/2
b. \(B=4t-8v-v^2-t^2+2017=-\left(v^2+t^2-4t+8v+20\right)+2037\)
\(=-\left(t-2\right)^2-\left(v+4\right)^2+2037\)
Vì \(\left(t-2\right)^2\ge0;\left(v+4\right)^2\ge0\forall t;v\)
\(\Rightarrow-\left(t-2\right)^2-\left(v+4\right)^2+2037\le2037\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(t-2\right)^2=0\\\left(v+4\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t-2=0\\v+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\v=-4\end{cases}}\)
Vậy Bmax = 2037 <=> t = 2 ; v = - 4
c. \(C=m-\frac{m^2}{4}=-\frac{1}{4}\left(m-2\right)^2+1\)
Vì \(\left(m-2\right)^2\ge0\forall m\)\(\Rightarrow-\frac{1}{4}\left(m-2\right)^2+1\le1\)
Dấu "=" xảy ra \(\Leftrightarrow-\frac{1}{4}\left(m-2\right)^2=0\Leftrightarrow m-2=0\Leftrightarrow m=2\)
Vậy Cmax = 1 <=> m = 2
a) Đặt A = u2 + v2 - 2u + 3v + 15
= (u2 - 2u + 1) + (v2 + 3v + 9/4) + 47/4
= (u - 1)2 + (v + 3/2)2 + 47/4 \(\ge\frac{47}{4}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}u-1=0\\v+\frac{3}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}u=1\\v=-\frac{3}{2}\end{cases}}\)
Vậy Min A = 47/4 <=> u = 1 ; y = -3/2
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
a) \(A=1-8x-x^2=-\left(x^2+8x+16\right)+17=-\left(x-4\right)^2+17\le17\)
\(ĐTXR\Leftrightarrow x=4\)
b) \(B=5-2x+x^2=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(ĐTXR\Leftrightarrow x=1\)
c) \(C=x^2+4y^2-6x+8y-2021=\left(x^2-6y+9\right)+\left(4y^2+8y+4\right)-2034=\left(x-3\right)^2+\left(2y+2\right)^2-2034\ge-2034\)
\(ĐTXR\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\)
a: Ta có: \(A=-x^2-8x+1\)
\(=-\left(x^2+8x-1\right)\)
\(=-\left(x^2+8x+16-17\right)\)
\(=-\left(x+4\right)^2+17\le17\forall x\)
Dấu '=' xảy ra khi x=-4
b: Ta có: \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
Phân tích đa thức thành nhân tử có dạng (a+b)2 + c trong đó c là 2013 và vận dụng cách tìm GTNN đã học (Thầy giáo Đặng Trọng Sơn)
thầy chỉ hướng dẫn cho e như thế thôi e tự tìm cách giải mới giỏi lên được
\(A=2x^2+3x+y^2+y+15=2x^2+2\cdot2\cdot x\cdot\frac{3}{4}+2\cdot\frac{3^2}{4^2}-\frac{9}{8}+y^2+2\cdot y\cdot\frac{1}{2}+\frac{1}{2^2}-\frac{1}{8}+15.\)
\(A=2\cdot\left(x+\frac{3}{4}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{55}{4}\ge\frac{55}{4}\forall x;y\)
Vậy, GTNN của A = 55/4 khi x = -3/4 và y = -1/2