K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=\frac{9}{4}\)\(\Rightarrow2\left(ab+ac+bc\right)=\frac{9}{4}-\left(a^2+b^2+c^2\right)\)

mà ta có \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+ac+bc\right)\ge0\)\(\Leftrightarrow2\left(a^2+b^2+c^2\right)-\frac{9}{4}+\left(a^2+b^2+c^2\right)\ge0\)

\(3\left(a^2+b^2+c^2\right)\ge\frac{9}{4}\Leftrightarrow\left(a^2+b^2+c^2\right)\ge\frac{3}{4}\)có \(\left(a^2+b^2+c^2\right)\)đạt min là 3/4 khi và chỉ khi a=b=c=1/2

2:

a: =>a^2+2ab+b^2-2a^2-2b^2<=0

=>-(a^2-2ab+b^2)<=0

=>(a-b)^2>=0(luôn đúng)

b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0

=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0

=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

NV
31 tháng 1 2021

\(P\le a^2+b^2+c^2+3\sqrt{3\left(a^2+b^2+c^2\right)}=12\)

\(P_{max}=12\) khi \(a=b=c=1\)

Lại có: \(\left(a+b+c\right)^2=3+2\left(ab+bc+ca\right)\ge3\Rightarrow a+b+c\ge\sqrt{3}\)

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}=3\)

\(\Rightarrow\sqrt{3}\le a+b+c\le3\)

\(P=\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}+3\left(a+b+c\right)\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+3\left(a+b+c\right)-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow\sqrt{3}\le x\le3\)

\(P=\dfrac{1}{2}x^2+3x-\dfrac{3}{2}=\dfrac{1}{2}\left(x-\sqrt{3}\right)\left(x+6+\sqrt{3}\right)+3\sqrt{3}\ge3\sqrt{3}\)

\(P_{min}=3\sqrt{3}\) khi \(x=\sqrt{3}\) hay \(\left(a;b;c\right)=\left(0;0;\sqrt{3}\right)\) và hoán vị

22 tháng 6 2021

thế bạn bt hok

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

15 tháng 9 2019

Vì:  a + 1 1 + b 2 = a + 1 − b 2 ( a + 1 ) 1 + b 2 ;   1 + b 2 ≥ 2 b   n ê n   a + 1 1 + b 2 ≥ a + 1 − b 2 ( a + 1 ) 2 b = a + 1 − a b + b 2

Tương tự:  b + 1 1 + c 2 ≥ b + 1 − b c + c 2 ;   c + 1 1 + a 2 ≥ c + 1 − c a + a 2 ⇒ M ≥ a + b + c + 3 − ( a + b + c ) + ( a b + b c + c a ) 2 = 3 + 3 − ( a b + b c + c a ) 2

Chứng minh được:  3 ( a b + b c + c a ) ≤ ( a + b + c ) 2 = 9 a c ⇒ 3 − ( a b + b c + c a ) 2 ≥ 0 ⇒ M ≥ 3

Dấu “=” xảy ra khi a = b = c = 1. Giá trị nhỏ nhất của M bằng 3.

15 tháng 11 2021

\(1.a,\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=\left(ac\right)^2+2abcd+\left(bd\right)^2+\left(ad\right)^2-2abcd+\left(bc\right)^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(b,\left(ac+bd\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ad-bc\right)^2\le\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow-\left(ad-bc\right)^2\le0\left(luôn-đúng\right)\)

\(dấu"='\) \(xảy\) \(ra\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(c2:x+y=2\Rightarrow\left(x+y\right)^2=4\)

\(\Rightarrow\left(x+y\right)^2+\left(x-y\right)^2\ge4\)

\(\Leftrightarrow x^2+2xy+y^2+x^2-2xy+y^2\ge4\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge4\Leftrightarrow x^2+y^2\ge2\)

\(dấu"="\) \(xảy\) \(ra\Leftrightarrow x=y=1\)

15 tháng 11 2021

Câu 1:

a)Ta có (ac+bd)2+(ad-bc)2=(ac)2+2abcd+(bd)2+(ad)2-2abcd+(bc)2

                                          =(ac)2+(bd)2+(ad)2+(bc)2

                                          =a2(c2+d2)+b2(c2+d2)

                                          =(a2+b2)(c2+d2) (đpcm)

b)Ta có (ac+bd)2 = (ac)2+2abcd+(bd)2

Lại có (a2+b2)(c2+d2) = (ac)2+(bd)2+(ad)2+(bc)2

Ta có (ac+bd)≤  (a2+b2)(c2+d2

<=>(a2+b2)(c2+d2) - (ac+bd)2 ≥ 0

<=>(ac)2+(bd)2+(ad)2+(bc)2-[(ac)2+2abcd+(bd)2]

<=>(ad)2 - 2abcd +(bc)2 ≥ 0

<=>(ad-bc)2 ≥ 0 (Luôn đúng) => đpcm

Câu 2:

Áp dụng BĐT Bunhiacôpxki, ta có (x+ y)2 ≤ (x2 + y2)(12 + 12) => 4  2.S => 2  S

Dấu ''='' xảy ra <=> x=y=1

Vậy Min S=2 <=> x=y=1

20 tháng 12 2023

cứu