Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
\(A=\frac{x+1}{x^2+x+1}\Rightarrow Ax^2+\left(A-1\right)x+A-1=0\)
Với \(x=-1\Rightarrow A=0\)
Với \(A\ne0\):
\(\Delta=\left(A-1\right)^2-4A\left(A-1\right)\ge0\)
\(\Rightarrow\left(A-1\right)\left(-3A-1\right)\ge0\)
\(\Rightarrow-\frac{1}{3}\le A\le1\)
\(\Rightarrow A_{max}=1\) khi \(x=0\)
\(A_{min}=-\frac{1}{3}\) khi \(x=-2\)
bài này bạn dùng biệt số denta
tích chéo rồi đưa về phương trình dạng
\(ax^2+bx+c=0\)
\(\Delta=b^2-4ac\) cho\(\Delta=0\)
giải tìm nghiệm của phương trình lấy giá trị nghiệm nhỏ nhất
nhân nghiệm đó với mẫu số của A rút gọn ta chứng minh được ngiệm vừa tìm được là giá trị nhỏ nhất của A
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{\frac{2}{3}x^2-\frac{4}{3}x+\frac{2}{3}}{x^2+x+1}+\frac{1}{3}=\frac{2}{3}\frac{\left(x-1\right)^2}{x^2+x+1}+\frac{1}{3}\ge\frac{1}{3}\)
\(\Rightarrow MIN\left(Q\right)=\frac{1}{3}\)Dấu "=" xảy ra khi x=1
\(Q=\frac{x^2-x+1}{x^2+x+1}=\frac{-2x^2-4x-2}{x^2+x+1}+3=-2\frac{\left(x+1\right)^2}{x^2+x+1}+3\ge3\)
\(\Rightarrow MAX\left(Q\right)=3\)Dấu "=" xảy ra khi x=-1
Giao Luu Trường phái
Pháp pháp Siêu trừu tượng
\(B=\frac{2\left(2x+1\right)+2}{\left(2x+1\right)^2+3}=\frac{2y+2}{y^2+3}\)
\(B-1\)=\(\frac{2y+2}{y^2+3}-1\)\(=\frac{2y+2-y^2-3}{y^2+3}=-\frac{\left(y^2-2y+1\right)}{y^2+3}=-\frac{\left(y-1\right)^2}{y^2+3}\le0\)
\(\Rightarrow B\ge1\) Khi y=1=> x=0
\(B+\frac{1}{3}=\frac{6y+6+y^2+3}{y^2+3}=\frac{\left(y+3\right)^2}{y^2+3}\ge0\)
\(\Rightarrow B\ge-\frac{1}{3}\) khi y=-3=> x=-2
KL
\(-\frac{1}{3}\le B\le1\)
cho ý kiến
GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2
GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4
Ta có:
\(A=\sqrt{1-x}+\sqrt{1+x}\) \(\left(-1\le x\le1\right)\)
\(=1.\sqrt{1-x}+1.\sqrt{1+x}\)
Áp dụng BĐT Bunhiacopxki, ta có:
\(A=1.\sqrt{1-x}+1.\sqrt{1+x}\)
\(\le\sqrt{\left(1^2+1^2\right).\left(1-x+1+x\right)}=\sqrt{2.2}=2\)
Vậy \(A_{max}=2\), đạt được khi và chỉ khi \(\dfrac{1}{\sqrt{1-x}}=\dfrac{1}{\sqrt{1+x}}\Leftrightarrow1-x=1+x\Leftrightarrow x=0\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)