Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình 2x+m=x-1 nhận x=-2 làm nghiệm thì
Thay x=-2 vào phương trình 2x+m=x-1, ta được:
\(2\cdot\left(-2\right)+m=-2-1\)
\(\Leftrightarrow m-4=-3\)
hay m=-3+4=1
Vậy: Khi m=1 thì phương trình 2x+m=x-1 nhận x=-2 làm nghiệm
\(B=\left|x-4\right|\left(2-\left|x-4\right|\right)\ge0\forall x\)
Dấu '=' xảy ra khi x=4
Để B là số nguyên thì x chia hết cho 2x-1
=>2x chia hết cho 2x-1
=>2x-1+1 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1\right\}\)
=>\(x\in\left\{1;0\right\}\)
-Câu cuối thôi nha bạn :v
\(B=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+\dfrac{4}{5}x+\dfrac{19}{25}\right)=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}+\dfrac{15}{25}\right)=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{15}{5}\le-3\)\(B_{max}=-3\Leftrightarrow x=\dfrac{-2}{5}\)
2n3-7n2+13n
=2n3-n2-6n2+3n+10n
=n2(2n-1)-3n(2n-1)+10n chia hết cho 2n-1
=>10n chia hết cho 2n-1
=>10n-5+5 chia hết cho 2n-1
=>5 chia hết cho 2n-1
=>2n-1=-5;-1;1;5
=>2n=-4;0;2;6
=>n=-2;0;1;3
Vậy n=-2;0;1;3
Tìm các số nguyên n để: Gía trị biểu thức n3-n2+2n+7 chia hết cho giá trị biểu thức n2+1
Ta có:\(x^2+4x+10=\left(x^2+2\cdot2\cdot x+2^2\right)+6=\left(x+2\right)^2+6\)
\(\Rightarrow\frac{3}{x^2+4x+10}=\frac{3}{\left(x+2\right)^2+6}\)
Do \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+6\ge6\)
\(\Rightarrow\frac{3}{\left(x+2\right)^2+6}\le\frac{3}{6}=\frac{1}{2}\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Vậy \(A_{min}=\frac{1}{2}\Leftrightarrow x=-2\)
\(x^2-2x+y^2+4y+8=x^2-2x+1+y^2+4y+4+3=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
\(MinE=3\Leftrightarrow x=1;y=-2\)
2: \(A=x^2-10x+25-34=\left(x-5\right)^2-34\ge-34\forall x\)
Dấu '=' xảu ra khi x=5
\(1,C=x^2+x-3\\ \Rightarrow C=\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{13}{4}\\ \Rightarrow C=\left(x+\dfrac{1}{2}\right)^2-\dfrac{13}{4}\ge-\dfrac{13}{4}\)
dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(C_{min}=-\dfrac{13}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(2,A=x^2-10x-9\\ \Rightarrow A=\left(x^2-10x+25\right)-34\\ \Rightarrow A=\left(x-5\right)^2-34\)
dấu "=" xảy ra \(\Leftrightarrow x=5\)
Vậy \(A_{min}=-34\Leftrightarrow x=5\)
\(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì: \(-\left(x-\frac{1}{2}\right)^2\le0\)
=> \(-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy GTLN của B là \(\frac{1}{4}\) khi \(x=\frac{1}{2}\)