Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)
Dấu \("="\Leftrightarrow x=1\)
\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)
Dấu \("="\Leftrightarrow x=-2\)
\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)
Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)
\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)
Dấu \("="\Leftrightarrow x=2\)
a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4
=> GTNN a) =3/4 khi x=-1/2
b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6
=> GTNN b) = -6 khi x=-1/2
c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12
GTNN c) =12 khi x=-1
d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14
GTNN d) =-14 khi x=2 , y=4
\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)
Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)
\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)
Dấu \("="\Leftrightarrow x=-1\)
\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)
\(A_{max}=7\Leftrightarrow x=2\)
Lời giải:
a. Áp dụng BĐT Cô-si:
$x^4+9\geq 6x^2$
$y^4+9\geq 6y^2$
$\Rightarrow x^4+y^4+18\geq 6(x^2+y^2)$
$A+18\geq 36$
$A\geq 18$
Vậy GTNN của $A$ là $18$ khi $x^2=y^2=3$
b.
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 12\geq (x+y)^2$
$\Rightarrow B=x+y\leq \sqrt{12}$. Vậy $B$ max bằng $\sqrt{12}$ khi $x=y=\sqrt{3}$
$(x-y)^2\geq 0$
$\Leftrightarrow x^2+y^2\geq 2xy$
$\Leftrightarrow 6\geq 2C$
$\Leftrightarrow C\leq 3$. Vậy $C_{\max}=3$. Giá trị này đạt tại $x=y=-\sqrt{3}$
\(A=-x^2-y^2+xy+2x+2y\)
\(\Leftrightarrow A=-\left(x^2-xy+\frac{y^2}{4}\right)+\left(2x-y\right)-1-\frac{3}{4}y^2+3y-3+\left(1+3\right)\)
\(\Leftrightarrow A=-\left[\left(x-\frac{y}{2}\right)^2-2\left(x-\frac{y}{2}\right)+1\right]-\frac{3}{4}\left(y^2-4y+4\right)+4\)
\(\Leftrightarrow A=-\left(x-\frac{y}{2}-1\right)^2-\frac{3}{4}\left(y-2\right)^2+4\le4\forall x,y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-\frac{y}{2}-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vậy \(Max_A=\frac{4}{3}\) khi \(x=y=2\)
Cảm ơn <3