K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2022

\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)

\(A_{max}=7\Leftrightarrow x=2\)

19 tháng 4 2022

cảm ơn nha cậu nhìu nha!

25 tháng 9 2021

\(a,=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\le-3\)

Dấu \("="\Leftrightarrow x=1\)

\(b,=-\left(x^2+4x+4\right)+4=-\left(x+2\right)^2+4\le4\)

Dấu \("="\Leftrightarrow x=-2\)

\(c,=-\left(9x^2-24x+16\right)-2=-\left(3x-4\right)^2-2\le-2\)

Dấu \("="\Leftrightarrow x=\dfrac{4}{3}\)

\(d,=-\left(x^2-4x+4\right)+3=-\left(x-2\right)^2+3\le3\)

Dấu \("="\Leftrightarrow x=2\)

25 tháng 9 2021

a) x2 +x +1 = x2 + x + 1/4 + 3/4 =(x+1/2)2 + 3/4

=> GTNN a) =3/4 khi x=-1/2

b) 4x2 +4x -5 = 4x2 + 4x +1 -6 = (2x+1)2-6

=> GTNN b) = -6 khi x=-1/2

c) (x-3)(x+5) +4 = x2+2x -11 = x2+2x +1-12=(x+1)2-12

GTNN c) =12 khi x=-1 

d) x2-4x+y2-8y+6=x2-4x+4+y2-8y+16-14=(x-2)2+(y-4)2-14

GTNN d) =-14 khi x=2 , y=4

25 tháng 9 2021

\(a,=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(b,=\left(4x^2+4x+1\right)-6=\left(2x+1\right)^2-6\ge-6\)

Dấu \("="\Leftrightarrow x=-\dfrac{1}{2}\)

\(c,=x^2+2x-15+4=\left(x+1\right)^2-12\ge-12\)

Dấu \("="\Leftrightarrow x=-1\)

\(d,=\left(x^2-4x+4\right)+\left(y^2-8y+16\right)-14=\left(x-2\right)^2+\left(y-4\right)^2-14\ge-14\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)

Ta có: \(A=-2x^2-5x+3\)

\(=-2\left(x^2+\dfrac{5}{2}x-\dfrac{3}{2}\right)\)

\(=-2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{49}{16}\right)\)

\(=-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\)

Ta có: \(\left(x+\dfrac{5}{4}\right)^2\ge0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2\le0\forall x\)

\(\Rightarrow-2\left(x+\dfrac{5}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{5}{4}=0\)

hay \(x=-\dfrac{5}{4}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=-2x^2-5x+3\) là \(\dfrac{49}{8}\) khi \(x=-\dfrac{5}{4}\)

=-3x^2+12x-12+12

=-3(x^2-4x+4)+12

==-3(x-2)^2+12<=12

Dấu = xảy ra khi x=2

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

27 tháng 12 2021

x + 3y = 10 <=> x = 10 - 3y thay vào D ta được:

D = (10 - 3y)2 + y2 = 100 - 60y + 9y2 + y2 

D = 10y2 - 60y + 100 = 10(y2 - 6y + 10) 

D = 10(y2 -2y3 + 9 + 1) = 10[(y - 3)2 + 1]

D = 10(y - 3)2 + 10 \(\ge\)10

Dấu "=" xảy ra khi: y - 3 = 0 <=> y = 3

=> x = 10 - 3y = 10 - 3.3= 1

Vậy gtnn D = 10 khi x = 1, y = 3

27 tháng 12 2021

tìm giá trị nhỏ nhất hay lớn nhất vậy bạn?

19 tháng 4 2022

-Câu cuối thôi nha bạn :v

\(B=-5x^2-4x-\dfrac{19}{5}=-5\left(x^2+\dfrac{4}{5}x+\dfrac{19}{25}\right)=-5\left(x^2+2.\dfrac{2}{5}x+\dfrac{4}{25}+\dfrac{15}{25}\right)=-5\left(x+\dfrac{2}{5}\right)^2-\dfrac{15}{5}\le-3\)\(B_{max}=-3\Leftrightarrow x=\dfrac{-2}{5}\)

19 tháng 4 2022

cảm ơn cậu nhìu nha!yeu.  

27 tháng 10 2021

\(-4x^2+4x+2013=-\left(4x^2-4x+1\right)+2014=-\left(2x-1\right)^2+2014\le2014\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)