K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

3 tháng 10 2017

B = 1 2 x - x - 3 ĐK: x>0

2 x - x - 3 = - x - 2 x + 3 = - x - 2 x + 1 + 2 = - x - 1 2 + 2 = - x - 1 2 - 2

Ta có: 

- x - 1 2 ≤ 0 ⇒ - x - 1 2 - 2 ≤ - 2 ⇒ 1 - x - 1 2 - 2 ≥ 1 - 2 ⇒ B ≥ - 1 2

21 tháng 7 2023

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

21 tháng 7 2023

Câu 1: 

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\)(1)

Trường hợp 1: x<1

(1) trở thành 1-x+2-x=3

=>3-2x=3

=>x=0(nhận)

Trường hợp 2: 1<=x<2

(1) trở thành x-1+2-x=3

=>1=3(loại)

Trường hợp 3: x>=2

(1) trở thành x-1+x-2=3

=>2x-3=3

=>2x=6

hay x=3(nhận)

NV
6 tháng 11 2021

Đặt \(\sqrt{x^2+4}=a\ge2\)

\(\Rightarrow x^2=a^2-4\)

\(\Rightarrow A=\dfrac{2\left(a^2-4\right)+3}{a+2}=\dfrac{2a^2-5}{a+2}=2a-4+\dfrac{3}{a+2}\)

\(A=\dfrac{3\left(a+2\right)}{16}+\dfrac{3}{a+2}+\dfrac{29}{16}a-\dfrac{35}{8}\ge2\sqrt{\dfrac{9\left(a+2\right)}{16\left(a+2\right)}}+\dfrac{29}{16}.2-\dfrac{35}{8}=\dfrac{3}{4}\)

\(A_{min}=\dfrac{3}{4}\) khi \(a=2\Rightarrow x=0\)

17 tháng 10 2023

e nghĩ mãi khum ra, e c.ơn ạ

7 tháng 2 2022

Châu lớp 8 mà cũng được phết nhỉ

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)

$\Leftrightarrow A.2\geq \frac{2312}{225}$

$\Leftrightarrow A\geq \frac{1156}{225}$

Vậy $A_{\min}=\frac{1156}{225}$