K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 3 2021

Ta có bất đẳng thức: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với \(x,y>0\).

Dấu \(=\)xảy ra khi \(x=y\).

Ta có: \(\frac{1}{2x+y+z}=\frac{1}{x+y+x+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\)

\(\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\).

Tương tự với hai số hạng còn lại. 

Suy ra \(P\le\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)+\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\)

\(=\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{2020}{4}=505\).

Dấu \(=\)xảy ra khi \(x=y=z=\frac{3}{2020}\).

2 tháng 1 2017

\(x+2y=5\)        \(z+2x=9\)        \(y+2z=10\)
\(\Rightarrow x+2y+z+2x+y+2z=5+9+10\)
\(\Leftrightarrow3x+3y+3z=24\)
\(\Leftrightarrow3\left(x+y+z\right)=24\Rightarrow x+y+z=\frac{24}{3}=8\)

4 tháng 1 2017

\(8\)nha bạn

Chúc các bạn học giỏi

Tết vui vẻ nha

15 tháng 1 2022

Vđồ ngu đồ ăn hại cút pẹ mày đi 

15 tháng 1 2022

đồ ngu đồ ăn hại cút pẹ mày đi 

4 tháng 5 2017

Ta có: \(\dfrac{16}{2x+y+z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\left(2\right)\\\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{4}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{4.4}{16}=1\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{4}\)

18 tháng 11 2015

\(A=\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(z^2+2z+1\right)-3\)

    \(=\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2-3\ge-3;vì:\left(x+1\right)^2\ge0;\left(y+1\right)^2\ge0;\left(z+1\right)^2\ge0\)

A min = -3 khi x=y=z = -1

15 tháng 6 2016

{-1;-1;-1}

Bạn bảo nhập thôi ko phải giải :D 

27 tháng 1 2017

Ta có : x + 2y + z + 2x + y + 2x = 5 + 9 + 10

<=> 3x + 3y + 3z = 24

<=> 3(x + y + z) = 24

=> x + y + z = 24 : 3 = 7