Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
Cho hai số thực x, y thỏa x^2+xy+y^2=1. TÌm giá trị lớn nhất của biểu thức: P=x^3*y+y^3*x
Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)
\(\Leftrightarrow yx^2+yx+y=x^2+2\)
\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)
*Xét y = 1 thì pt trở thành \(x-1=0\)
\(\Leftrightarrow x=1\)
*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x
Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)
\(=y^2-4\left(y^2-3y+2\right)\)
\(=y^2-4y^2+12y-8\)
\(=-3y^2+12y-8\)
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-3y^2+12y-8\ge0\)
\(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)
GỌI GIAO ĐIỂM CỦA AH VỚI MB LÀ G
XÉT 2 TAM GIÁC ĐỒNG DẠNG AKH VÀ MKB ==>\(\frac{KH}{KB}=\frac{AK}{KM}\)<=>KH.KM=AK.BK
ĐỂ KH.BK LỚN NHẤT KHI AK.BK LỚN NHẤT
\(A^2=\left(x-y\right)^2=\left(1.x-\dfrac{1}{2}.2y\right)^2\le\left(1+\dfrac{1}{4}\right)\left(x^2+4y^2\right)=\dfrac{5}{4}\)
\(\Rightarrow A\le\dfrac{\sqrt{5}}{2}\)
\(A_{max}=\dfrac{\sqrt{5}}{2}\) khi \(\left(x;y\right)=\left(-\dfrac{2\sqrt{5}}{5};\dfrac{\sqrt{5}}{10}\right);\left(\dfrac{2\sqrt{5}}{5};-\dfrac{\sqrt{5}}{10}\right)\)