Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\)≥0 ∀x
⇒\(A\)≥2 ∀x
Min A=2⇔\(x=3\)
+) \(B=11-x^2\)
Câu này chỉ tìm được max thôi nha
Để biểu thức đã cho đạt giá trị lớn nhất thì (x² - 9)⁴ và -|2x + 6| - (x² - 9)⁴ đạt giá trị lớn nhất
Mà (x² - 9)⁴ ≥ 0 với mọi x ∈ R
⇒ (x² - 9)⁴ = 0 là giá trị nhỏ nhất
⇒ x² - 9 = 0
⇒ x² = 9
⇒ x = 3 hoặc x = -3
*) x = 3
⇒ -|2x + 6| = -12
*) x = -3
⇒ -|2x + 6| = 0
Vậy giá trị lớn nhất của biểu thức đã cho là 2023 khi x = -3
a, \(A-x^2+5\le5\)Dấu ''='' xảy ra khi x = 0
b, \(B=-2\left(x-1\right)^2+3\le3\)Dấu ''='' xảy ra khi x =1
c, \(C=-\left|3x-2\right|+5\le5\)Dấu ''='' xảy ra khi x = 2/3
Ta có: \(E=\dfrac{x^2+8}{x^2+2}=\dfrac{x^2+2+6}{x^2+2}=1+\dfrac{6}{x^2+2}\)
Để E đạt GTLN thì \(\dfrac{6}{x^2+2}\) đạt GTLN hay \(x^2+2\) đạt GTNN
mà \(x^2+2\ge2\)\(\Rightarrow\)\((\dfrac{6}{x^2+2})_{max}=\dfrac{6}{2}=3\)
\(\Rightarrow E_{max}=1+3=4\Leftrightarrow x=0\)
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Bài 3:
B=(x-1)2+(y+2)2≥0
- minB=0 ⇔x=1 ; y=-2.
C=x2+\(\left|y-2\right|-5\)≥-5
- minC=-5 ⇔x=0 và y=2.
\(B=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Để \(1+\frac{12}{x^2+3}\) đạt gtln <=> \(\frac{12}{x^2+3}\) đạt gtln
<=> \(x^2+3\) đạt gtnn
\(x^2\ge0\Rightarrow x^2+3\ge3\)
Dấu "=" xảy ra <=> x2 = 0 => x = 0
Vậy gtln của B là \(1+\frac{12}{3}=1+4=5\) tại x = 0