Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
\(A=\frac{2002\left(x-1\right)+2003}{2003\left(x-1\right)}=\frac{2002}{2003}+\frac{1}{x-1}\)
=> x-1 phải là sô nguyên dương nhỏ nhất => x-1=1=> x=2
Ta có:
A = \(\frac{14-x}{4-x}\)
Để A có giá trị lớn nhất thì A > 0 => x < 4 và 4 - x bé nhất
=> x = {1; 2; 3}
Để 4 - x bé nhất thì x = 3
Giá trị đó là : \(\frac{14-3}{4-3}=\frac{11}{1}=11\)
\(\left|x-1\right|+\left|x-4\right|=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|-3\right|=3\)
Khi đó \(A\le\frac{2010}{3}\)
Dấu "=" xảy ra tại \(1\le x\le4\)
Bài giải
\(A=\frac{2010}{\left|x-1\right|+\left|x-4\right|}\) đạt GTLN khi \(\left|x-1\right|+\left|x-4\right|\) đạt GTNN
Đặt \(B=\left|x-1\right|+\left|x-4\right|\)
\(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=\left|3\right|=3\)
Dấu " = " xảy ra khi \(\left(x-1\right)\left(4-x\right)\ge0\text{ }\Rightarrow\hept{\begin{cases}x\ge1\\x\le4\end{cases}}\Rightarrow\text{ }1\le x\le4\text{ }\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\right\}\)
\(\Rightarrow\text{ }Min\text{ }B=3\text{ khi và chỉ khi }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\right\}\)
\(\Rightarrow\text{ }Max\text{ }A=\frac{2010}{3}\text{ khi và chỉ khi }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\right\}\)