Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: lx-15l >= 0
suy ra 4*lx-15l >= 0
4*lx-15l+2011 >= 2011
A >= 2011
dấu "=" xảy ra khi lx-15l=0
suy ra x-15=0
x=0+15
x=15
Vậy GTNN của A=2011 khi x=15
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
a)x+y+xy=2
=> x+xy+y=2
=>x(y+1)+y=2
=>x(y+1)+y+1=3
=>x(y+1)+(y+1)=3
=>(y+1)(x+1)=3
Đến đây thì dễ rồi, bạn tự tìm nốt nha
b) \(\frac{27-2x}{12-x}=\frac{24-2x+3}{12-x}=\frac{2.\left(12-x\right)+3}{12-x}=2+\frac{3}{12-x}\)
Để Q lớn nhất thì \(\frac{3}{12-x}\) lớn nhất
Với x>12 thì \(\frac{3}{12-x}< 0\)
Với x<12 thì \(\frac{3}{12-x}.>0\)
Phân số \(\frac{3}{12-x}\) với x<12 có tử và mẫu đều dương, tử ko đổi nên mẫu phải nhỏ nhất
=>12-x=1
=>x=11