K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

24 tháng 8 2016

SỐ CHIA LÀ 2 THƯƠNG LÀ 12

24 tháng 8 2016

số chia là 2 thương là 12

28 tháng 1 2016

số dư là 22 .Vì so A là 52

28 tháng 1 2016

A+8: 15 và 6

A+8: bcnn cùa 15 và 6 là 30

A:30du 22

14 tháng 3 2018

gọi số tự nhiên đó là a.

theo bài ra ta có :

a = 7t + 5 (t thuộc N)

a=13k + 4 (k thuộc N)

do đó:

a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)

a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)

Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91

Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82