Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3.5x^2+2x=\left(10x^5+2x\right):\left(2x-1\right)\)
\(=5x^4+\dfrac{5}{2}x^3+\dfrac{5}{4}x^2+\dfrac{5}{8}x+\dfrac{11}{16}\)(dư \(\dfrac{11}{16}\))
Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?
Gọi đa thức đó là A ta có :
A chia x - 2 dư 5
A chia x - 3 dư 7
=> A chia (x-2)(x-3) dư 5*7 = 35
\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\) và dư \(ax+b\)
=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)
Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5
=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1
Giả sử đa thức bị chia là m (x)
Gia sử thương là : q( x )
Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1
Suy ra , ta có : m( x ) =( x2 - 5x + 6 ) q( x ) = ax + b
Đi tìm X
x2 - 5x + 6 = 0
x2 - 2x - 3x + 6 = 0
x( x - 2) - 3(x - 2) = 0
( x - 2)( x - 3) = 0
Vậy x = 2 hoặc x = 3
Ta có giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :
f( 2 ) = 5
-> 2a + b = 5 ( 1)
Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó ta được :
f( 3 ) = 7
-> 3a + b = 7 ( 2)
Từ ( 1 và 2) suy ra : a = 2 ; b = 1
Suy ra : f( x ) = ( x2 - 5x + 6 ) Thay số q( x ) = 2x + 1
Vậy dư là 2x +1
Ta có đa thức x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 chưa (x + 1) nên phần dư là một hằng số
Gọi thương là Q(x) và dư r. Khi đó với mọi x ta có
x 2 + 3 x + 2 5 + x 2 - 4 x - 4 5 - 1 = Q(x)(x + 1) + r (1)
Thay x = -1 vào (1) ta được
( ( - 1 ) 2 + 3 . ( - 1 ) + 2 ) 5 + ( ( - 1 ) 2 – 4 ( - 1 ) – 4 ) 5 – 1 = Q(x).(-1 + 1) + r
r = 0 5 + 1 5 – 1 ó r = 0
vậy phần dư của phép chia là r = 0.
đáp án cần chọn là: C
Ta có:
Đặt A=(x+2)(x+4)(x+6)(x+8)+2012
=(x^2+10x+16)(x^2+10x+24)+2012
Đặt y=x^2+10x+21
A=(y-5)(y+3)+2012
=y^2-2y-15+2012
=y(y-2)+1997
Mà y(y-2) chia hết cho x^2+10x+21 nên số dư là 1997
( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 2012
= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ]] + 2012
= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 2012
Đặt y = x2 + 10x + 21
= ( y - 5 )( y + 3 ) + 2012 = y2 - 2y + 1997 = ( x2 + 10x + 21 )2 -2 ( x2 + 10x + 21 ) + 1997
=> Dư 2027
tôi no bít
gọi Q(x) là thương của phép chia x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1
vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b
ta có x99+x55+x11+x+7=(x2−1)Q(x)+ax+bx99+x55+x11+x+7=(x2−1)Q(x)+ax+b
=(x−1)(x+1)Q(x)+ax+b(x−1)(x+1)Q(x)+ax+b (*)
thay x=1 ở (*) cho ta được 11=a+b
thay x=-1 ở (*) cho ta được 3=-a+b
ta có a+b+(-a+b)=11+3=14
⇔2b=14⇔b=7⇒a=11−7=4⇔2b=14⇔b=7⇒a=11−7=4
Vậy dư của phép chia đa thức P(x)= x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1 là 4x+7