K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2023

a) ĐKXĐ: 4x ≥ 0 ⇔ x ≥ 0

b) ĐKXĐ: 5.(-x) ≥ 0 ⇔ -x ≥ 0 ⇔ x ≤ 0

c) ĐKXĐ: 4 - x² ≥ 0 ⇔ x² ≤ 4 ⇔ -2 ≤ x ≤ 2

d) 4x² - 1 ≥ 0 ⇔ 4x² ≥ 1 ⇔ x² ≥ 1/4 ⇔ -1/2 ≤ x hoặc x ≥ 1/2

NV
18 tháng 1 2022

ĐKXĐ:

a.

\(x^2-9\ge0\Rightarrow\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)

b.

\(\left(3x+2\right)\left(x-1\right)\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x\le-\dfrac{2}{3}\end{matrix}\right.\)

c.

\(\left\{{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\) \(\Rightarrow x\ge1\)

18 tháng 1 2022

a) x khác 0, khác 3

b) x khác 0, khác 1, khác 2/3

c) x khác 0, khác 1, khác 2/3

2 tháng 7 2023

Đề yc giải pt à em?

2 tháng 7 2023

Câu b bạn có bị lỗi dấu căn không mà sao nó kéo dài cả 2 vế pt vậy :v

\(a,\sqrt{x^2-6x+9}+x=11\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=11-x\)

\(\Leftrightarrow\left|x-3\right|=11-x\\ TH_1:x\ge3\\ x-3=11-x\\ \Leftrightarrow2x=14\\ \Leftrightarrow x=7\left(tm\right)\)

\(TH_2:x< 3\\ -x+3=11-x\\ \Leftrightarrow-x+x=11-3\\ \Leftrightarrow0=8\left(VL\right)\)

Vậy \(S=\left\{7\right\}\)

\(c,\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}=4\) \(\left(dk:x\ge-1\right)\)

\(\Leftrightarrow\sqrt{4^2}.\sqrt{\left(x+1\right)}-\sqrt{3^2}.\sqrt{\left(x+1\right)}=4\left(1\right)\)

Đặt \(a=\sqrt{x+1}\left(a\ge0\right)\)

Pt trở thành : \(4a-3a=4\Leftrightarrow a=4\left(tmdk\right)\)

\(\Rightarrow\sqrt{x+1}=4\\ \Rightarrow\left(\sqrt{x+1}\right)^2=16\\ \Rightarrow\left|x+1\right|=16\)

\(TH_1:x\ge-1\\ x+1=16\Leftrightarrow x=15\left(tm\right)\\ TH_2:x< -1\\ -x-1=16\Leftrightarrow x=-17\left(tm\right)\)

Nhưng loại TH2 vì dk ban đầu là \(x\ge-1\)

Vậy \(S=\left\{15\right\}\)

\(d,\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\left(dk:x\ge-1\right)\\ \Leftrightarrow\sqrt{9}.\sqrt{x+1}+\sqrt{4}.\sqrt{x+1}-\sqrt{x+1}=0\)

Đặt \(\sqrt{x+1}=a\left(a\ge0\right)\)

Tới đây bạn làm tương tự câu c nha.

 

 

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

a: ĐKXĐ; 2011-m>=0

=>m<=2011

b: ĐKXĐ: (2căn 15-căn 59)/(x-7)>=0

=>x-7>0

=>x>7

c: ĐKXĐ: 4x^2+4x+1>=0

=>(2x+1)^2>=0(luôn đúng với mọi x)

d: ĐKXĐ: 12x+5>=0

=>x>=-5/12

`a, Đk: 2011-m>=0 <=> m <=2011.`

`b, Đk: x-7>0 <=> x > 7`

`c, Đk: x in RR`.

`d, Đk: 12x + 5 >=0 <=> x >=-5/12`

11 tháng 1 2023

`a)ĐKXĐ:{(x > 0),(x \ne 4):}`

`b)` Với `x > 0,x \ne 4` có:

`A=[\sqrt{x}(\sqrt{x}+2)+\sqrt{x}(\sqrt{x}-2)]/[x-4].[x-4]/[\sqrt{4x}]`

`A=[x-2\sqrt{x}+x-2\sqrt{x}]/[2\sqrt{x}]`

`A=[2\sqrt{x}(\sqrt{x}-2)]/[2\sqrt{x}]=\sqrt{x}-2`

`c)` Với `x > 0,x \ne 4` có:

`A < 3 <=>\sqrt{x}-2 < 3<=>\sqrt{x} < 5<=>x < 25`

           Kết hợp đk

 `=>0 < x < 25 ,x \ne 4`

9 tháng 7 2021

câu a trc nhé

undefined

9 tháng 7 2021

câu b nek (bn thông cảm nha,mk gõ trên mathtype nên gõ văn bản hơi khó)

undefined

11 tháng 9 2023

a) A xác định khi:

x - 3 ≥ 0 và 4 - x > 0

⇔ x ≥ 3 và x < 4

⇔ 3 ≤ x < 4

b) B xác định khi x - 1 > 0 và x - 2 ≠ 0

⇔ x > 1 và x ≠ 2

11 tháng 9 2023

a) \(A=\sqrt[]{x-3}-\sqrt[]{\dfrac{1}{4-x}}\left(1\right)\)

\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\4-x>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x< 4\end{matrix}\right.\)

\(\Leftrightarrow3\le x< 4\)

b) \(B=\dfrac{1}{\sqrt[]{x-1}}+\dfrac{2}{\sqrt[]{x^2-4x+4}}\left(1\right)\)

\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x^2-4x+4>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left(x-2\right)^2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)