Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm phần 1. Phần 2 bạn dựa vào đó mà làm.
Để \(\frac{12}{7n+1}\) rút gọn được thì 7n + 1 phải chia hết cho 1 ước số lớn hơn 1 của 12
Ư(12) = { 2 ; 3 ; 4 ; 6 ; 12 }
Để 7n + 1 chia hết cho 2 thì n lẻ;
Để 7n+ 1chia hết cho 4 thì 7n chia 4 dư 3; mà 7 chia 4 dư 3 nên n chia 4 dư 1
Để 7n+1 chia hết cho 3 thì 7n chia 3 dư 2; mà 7 chia 3 dư 1 nên n chia 3 dư 2
Để 7n+1 chia hết cho 6 thì 7n chia 6 dư 5; mà 7 chia 6 dư 1 nên n chia 6 dư 5
Để 7n+1 chia hết cho 12; thì n phải chia hết cho 4 và 3; tức n chia 4 dư 1; chia 3 dư 2; hay chia 12 dư 5 .
Vậy ...
a) Để A là p/số
\(\Rightarrow n+3\ne0\)
\(\Rightarrow n\ne-3\)
b) Để\(A\inℤ\)
\(\Rightarrow n-3⋮n+3\)
\(\Leftrightarrow n-3=n+3-6\)
\(\Rightarrow6⋮n+3\)
\(\Rightarrow n+3\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{-2;-4;-1;-5;0;-6;3;-9\right\}\)
Vì :\(n\inℕ\)
\(\Rightarrow n\in\left\{0;3\right\}\)
c)\(\frac{n-3}{n+3}=\frac{n+3-6}{n+3}=1-\frac{6}{n+3}\)
Để A tối giản
\(\LeftrightarrowƯCLN\left(n-3;n+3\right)=1\)
\(\LeftrightarrowƯCLN\left(-6;n-3\right)=1\)
\(\Rightarrow n-3⋮̸\)\(-6\)
\(\Rightarrow n-3\ne6k\)
\(\Rightarrow n\ne6k+3\)
Để phân số \(\frac{7}{n+1}\) là phân số tối giản thì cần 2 điều kiện
1.n+1\(\ne\)0=>n\(\ne\)-1
2.n+1\(⋮̸\)7=>n+1\(\ne\)7k(kEN)=>n\(\ne\)7k-1
Để \(\frac{7}{n+1}\) là phân số tối giản
Thì 7 chia hết cho n+1
\(\Rightarrow\)n+1\(\in\)Ư(7)
Vậy Ư(7)là:[1,-1,7,-7]
Do đó ta có bảng sau:
Vậy n=-2;-8;0;6