K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

do có \(1.f\left(x\right)-1.f\left(x-1\right)=...\) nên hệ số của \(x^4\) có thể là bất kì số nào khác 0. Ta lấy là số 1 cho đơn giản.

Đặt \(f\left(x\right)=x^4+ax^3+bx^2+cx+d\)

Thay x = -1,0,1,2 (hoặc 4 số bất kì) vào \(f\left(x\right)-f\left(x-1\right)=x^3\), ta được hệ 4 ẩn, 4 pt bậc nhất, từ đó giải ra a, b, c, d.

Thay vô Sn.

20 tháng 12 2015

Gọi F(x) = \(ax^4+bx^3+cx^2+dx+e\)

=> F(x-1) = \(a\left(x-1\right)^4+b\left(x-1\right)^3+c\left(x-1\right)^2+d\left(x-1\right)+e\)

F(x) - f(x-1) = x^3 . Rút gọn sau đó cho hệ số bằng nhau 

\(Sn=1+2^3+3^3+4^3+...+n^3=\left(1+2+...+n\right)^2=\left(\frac{n\left(n-1\right)}{2}\right)^2\)

Dễ dàng cm bằng pp quy nạp 

Với n = 2011  => S2011 =.....

28 tháng 7 2018

a) điều kiện xác định : \(x\ge2;x\ne5\)

b) \(P=\dfrac{x-5}{\sqrt{x-2}-\sqrt{3}}=\dfrac{\left(\sqrt{x-2}-\sqrt{3}\right)\left(\sqrt{x-2}+\sqrt{3}\right)}{\sqrt{x-2}-\sqrt{3}}\)

\(\Leftrightarrow P=\sqrt{x-2}+\sqrt{3}\)

c) ta có : \(P=\sqrt{x-2}+\sqrt{3}\ge\sqrt{3}\) \(\Rightarrow\) GTNN của \(P\)\(\sqrt{3}\)

dấu "=" xảy ra khi \(x=2\)

24 tháng 10 2020

\(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{1-3x+3x^2-x^3}{1-3x+3x^2}=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

Ta có \(f\left(x\right)+f\left(1-x\right)=1\) khi đó

\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+...+\left[f\left(\frac{1005}{2012}\right)+f\left(\frac{1007}{2012}\right)\right]+f\left(\frac{1006}{2012}\right)\)

\(=1+1+...+1+f\left(\frac{1}{2}\right)=1005+\frac{\left(\frac{1}{2}\right)^3}{1-3.\frac{1}{2}+3.\left(\frac{1}{2}\right)^2}=1005+\frac{1}{2}=\frac{2011}{2}\)

24 tháng 10 2020

Ta có: \(F\left(x\right)=\frac{x^3}{1-3x+3x^2}\)

\(\Leftrightarrow F\left(1-x\right)=1-\frac{x^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2-x^3}{1-3x+3x^2}\)

\(=\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

Ta có: \(F\left(x\right)+F\left(1-x\right)\)

\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3x+3x^2}\)

\(=\frac{1-3x+3x^2}{1-3x+3x^2}=1\)

\(\Leftrightarrow F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)=1\)

...

\(F\left(\frac{1005}{2012}\right)+F\left(\frac{1007}{2012}\right)=1\)

Do đó: \(A=F\left(\frac{1}{2012}\right)+F\left(\frac{2}{2012}\right)+...+F\left(\frac{2010}{2012}\right)+F\left(\frac{2011}{2012}\right)\)

\(=\left[F\left(\frac{1}{2012}\right)+F\left(\frac{2011}{2012}\right)\right]+\left[F\left(\frac{2}{2012}\right)+F\left(\frac{2010}{2012}\right)\right]+...+F\left(\frac{1006}{2012}\right)\)

\(=1+1+...+F\left(\frac{1}{2}\right)\)

\(=1005+\left[\left(\frac{1}{2}\right)^3:\left(1-3\cdot\frac{1}{2}+3\cdot\frac{1}{4}\right)\right]\)

\(=1005+\left[\frac{1}{8}:\left(1-\frac{3}{2}+\frac{3}{4}\right)\right]\)

\(=1005+\left(\frac{1}{8}:\frac{1}{4}\right)\)

\(=1005+\frac{1}{2}=\frac{2011}{2}\)

17 tháng 10 2017

Casio hả bạn

11 tháng 6 2020

dcv_new 

dcv - new

Thay m = - 1 vào thì ta có: \(x^2-x-6=0\)

<=> x = 3 hoặc x = -2 

Vậy m = -1 và x2 = - 2

11 tháng 6 2020

a, Thay \(x_1=3\)vào phương trình , khi đó :

\(pt< =>\)\(3^2+3m+2m-4=0\)

\(< =>5m+5=0\)

\(< =>m=-\frac{5}{5}=-1\)

Thay \(m=-1\)vào phương trình , khi đó :

\(pt< =>x^2-x+2=0\)

\(< =>x=\varnothing\left(vo-nghiem\right)\)(giải delta)

Vậy phương trình chỉ có nghiệm kép khi \(m=-1\)

b, Theo hệ thức vi ét ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m\\x_1x_2=\frac{c}{a}=2m-4\end{cases}}\)

Khi đó \(A=\frac{2m-4+3}{-m}=\frac{2m-1}{-m}\)

Bạn thiếu đề rồi thì phải !

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc