K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2023

2A - (\(xy\) + 3\(x^2\) - 2y2) = \(x^2\) - 8y2 + \(xy\)

2A = \(x^2\) - 8y2 + \(xy\) + \(xy\) + 3\(x^2\) - 2y2

2A = (\(x^2\) + 3\(x^2\)) - (8y2 + 2y2) + (\(xy+xy\))

2A = 4\(x^2\) - 10y2 + 2\(xy\)

A  = (4\(x^2\) - 10y2 + 2\(xy\)): 2 

A = (2\(x^2\) - 5y2 + \(xy\)).2:2

A  = 2\(x^2\) - 5y2 + \(xy\)

21 tháng 10 2023

a: Sửa đề: \(2A+\left(2x^2+y^2\right)=6x^2+5y^2-2x^2y^2\)

=>\(2A=6x^2+5y^2-2x^2y^2-2x^2-y^2\)

=>\(2A=4x^2+4y^2-2x^2y^2\)

=>\(A=2x^2+2y^2-x^2y^2\)

b: \(2A-\left(xy+3x^2-2y^2\right)=x^2-8y+xy\)

=>\(2A=x^2-8y+xy+xy+3x^2-2y^2\)

=>\(2A=4x^2+2xy-8y-2y^2\)

=>\(A=2x^2+xy-4y-y^2\)

c: Sửa đề: \(A+\left(3x^2y-2xy^2\right)=2x^2y+4xy^3\)

=>\(A=2x^2y+4xy^3-3x^2y+2xy^2\)

=>\(A=-x^2y+4xy^3+2xy^2\)

14 tháng 8 2021

a) \(=\left(x+6y\right)\left(x-6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x-6y-1\right)\)

b) \(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c) \(=2\left(x-y\right)^2-18\)

\(=2\left[\left(x-y\right)^2-3^2\right]\)

\(=2\left(x-y+3\right)\left(x-y-3\right)\)

a: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: \(x^3-8x^2+16x\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

a: Ta có: \(x^2-36y^2-x+6y\)

\(=\left(x-6y\right)\left(x+6y\right)-\left(x-6y\right)\)

\(=\left(x-6y\right)\left(x+6y-1\right)\)

b: Ta có: \(16x-8x^2+x^3\)

\(=x\left(x^2-8x+16\right)\)

\(=x\left(x-4\right)^2\)

c: Ta có: \(2x^2-4xy+2y^2-18\)

\(=2\left(x^2-2xy+y^2-9\right)\)

\(=2\cdot\left[\left(x-y\right)^2-9\right]\)

\(=2\left(x-y-3\right)\left(x-y+3\right)\)

d: Ta có: \(3x^2-7x-10\)

\(=3x^2+3x-10x-10\)

\(=3x\left(x+1\right)-10\left(x+1\right)\)

\(=\left(x+1\right)\left(3x-10\right)\)

e: Ta có: \(x^4-x^2-30\)

\(=x^4-6x^2+5x^2-30\)

\(=x^2\left(x^2-6\right)+5\left(x^2-6\right)\)

\(=\left(x^2-6\right)\left(x^2+5\right)\)

f: Ta có: \(x^2-xy-2y^2\)

\(=x^2-2xy+xy-2y^2\)

\(=x\left(x-2y\right)+y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+y\right)\)

g: Ta có: \(x^4-13x^2y^2+4y^4\)

\(=x^4-4x^2y^2+4y^4-9x^2y^2\)

\(=\left(x^2-2y^2\right)^2-\left(3xy\right)^2\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-3xy+2y^2\right)\)

\(=\left(x^2-3xy-2y^2\right)\left(x^2-xy-2xy+2y^2\right)\)

\(=\left[x\left(x-y\right)-2y\left(x-y\right)\right]\left(x^2-3xy-2y^2\right)\)

\(=\left(x-y\right)\left(x-2y\right)\left(x^2-3xy-2y^2\right)\)

h: Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)^2-3\left(x^2-2x\right)+\left(x^2-2x\right)-3\)

\(=\left(x^2-2x\right)\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=\left(x^2-2x-3\right)\left(x^2-2x+1\right)\)

\(=\left(x-3\right)\left(x+1\right)\cdot\left(x-1\right)^2\)

\(A=\left(x-y\right)\left(x^2-xy\right)-x\left(x^2+2y^2\right)\)

\(=x^3-x^2y-x^2y+xy^2-x^3-2xy^2\)

\(=-2x^2y-xy^2\)

\(=-2\cdot2^2\cdot\left(-3\right)-2\cdot\left(-3\right)^2\)

\(=8\cdot3-2\cdot9\)

=6

27 tháng 10 2021

a) \(=3\left(x^2-10x+25\right)=3\left(x-5\right)^2\)

b) \(=x\left(x+y\right)+8\left(x+y\right)=\left(x+y\right)\left(x+8\right)\)

c) \(=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)

27 tháng 10 2021

a) =3(x2−10x+25)=3(x−5)2

b) =x(x+y)+8(x+y)=(x+y)(x+8)

c) =(x+2)2−y2=(x+2−y)(x+2+y)

28 tháng 10 2021

a) \(=3\left(5y+4x\right)\)

b) \(=\left(x-3\right)^2\)

c) \(=y\left(y^2+2y+3\right)\)

d) \(=x\left(x+y\right)+6\left(x+y\right)=\left(x+6\right)\left(x+y\right)\)

 

 

6 tháng 7 2018

a) (3x2 – 2x2y) : x2 – (2xy2 + x2y) : (1/3 xy)

= (3x3 : x2) + (-2x2y : x2) - [(2x2y : 1/3 xy) +( x2y : 1/3 xy)]

= 3x – 2y – (6y + 3x) = 3x – 2y – 6y – 3x = -8y