Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y'=-3x^2+6x=0\Rightarrow\left\{{}\begin{matrix}x=0\Rightarrow y=2\\x=2\Rightarrow y=6\end{matrix}\right.\)
\(\Rightarrow A\left(0;2\right)\) ; \(B\left(2;6\right)\)
Theo công thức trung điểm ta có tọa độ trung điểm AB là \(\left(1;4\right)\)
ĐKXĐ: \(2x-x^3>=0\)
=>\(x^3-2x< =0\)
=>\(\left[{}\begin{matrix}x< =-\sqrt{2}\\0< =x< =\sqrt{2}\end{matrix}\right.\)
\(y=\sqrt{2x-x^3}\)
=>\(y'=\dfrac{\left(2x-x^3\right)'}{2\cdot\sqrt{2x-x^3}}=\dfrac{2-3x^2}{2\cdot\sqrt{2x-x^3}}\)
Đặt y'=0
=>\(2-3x^2=0\)
=>\(3x^2=2\)
=>\(x^2=\dfrac{2}{3}\)
=>\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{3}\left(nhận\right)\\x=-\dfrac{\sqrt{6}}{3}\left(loại\right)\end{matrix}\right.\)
Khi \(x=\dfrac{\sqrt{6}}{3}\) thì \(y=\sqrt{2\cdot\dfrac{\sqrt{6}}{3}-\left(\dfrac{\sqrt{6}}{3}\right)^3}\)
\(=\sqrt{\dfrac{4\sqrt{6}}{9}}=\dfrac{2}{3}\cdot\sqrt{\sqrt{6}}\)
https://hoc24.vn/cau-hoi/giai-cac-phuong-trinh-sau1-2x2-5x6-21-x2-2-26-5x-12-16sin2x-16cos2x-10.8680426955871
a)Cách tìm cực đại, cực tiểu của hàm số nhờ đạo hàm:
Quy tắc 1:
1. Tìm tập xác định.
2. Tính f'(x). Tìm các điểm tại đó f'(x) bằng 0 hoặc f'(x) không xác định.
3. Lập bảng biến thiên.
4. Từ bảng biến thiên suy ra các điểm cực trị.
Quy tắc 2:
1. Tìm tập xác định.
2. Tính f'(x). Giải phương trình f'(x) = 0 và kí hiệu xi (i = 1, 2, 3, ...) là các nghiệm của nó.
3. Tính f"(x) và f"(xi)
4. Nếu f"(xi) > 0 thì xi là điểm cực tiểu.
Nếu f"(xi) < 0 thì xi là điểm cực đại.
Dựa vào Quy tắc 2, ta có:
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại.
y"(-1) = y"(1) = 8 > 0 ⇒ x = ±1 là hai điểm cực tiểu.
Đáp án C
Phương pháp:
+) Tính y’, giải phương trình y' = 0 ⇒ các cực trị của hàm số.
+) Tính các giá trị cực trị của hàm số và yCT.yCĐ < 0
Cách giải:
Giá trị cực đại và giá trị cực tiểu trái dấu ⇒ (-2 + m)(2 + m) < 0 ⇔ -2 < m < 2
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Ta có tọa độ 3 cực trị: \(A\left(0;5\right)\) ; \(B\left(-1;4\right)\) ; \(C\left(1;4\right)\)
\(\overrightarrow{AB}=\left(-1;-1\right)\Rightarrow AB=\sqrt{2}\) ; \(\overrightarrow{AC}=\left(1;-1\right)\Rightarrow AC=\sqrt{2}\)
\(\overrightarrow{BC}=\left(2;0\right)\Rightarrow BC=2\)
Chu vi: \(AB+BC+AC=2+2\sqrt{2}\)
\(g\left(x\right)=f^2\left(x\right)-4f\left(x\right)\)
\(g'\left(x\right)=2f\left(x\right)f'\left(x\right)-4f'\left(x\right)\)
\(g'\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}f'\left(x\right)=0\\f\left(x\right)=2\end{cases}}\)
\(f\left(x\right)\)có ba cực trị nên \(f'\left(x\right)\)có ba nghiệm.
\(f\left(x\right)=2\)có hai nghiệm.
Do đó \(g'\left(x\right)=0\)có tổng cộng \(3+2=5\)nghiệm.
Chọn D.