K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2019

TXĐ: R\{-1}

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đồng biến trên các khoảng và do đó không có cực trị.

NV
13 tháng 6 2020

\(\left\{{}\begin{matrix}z'_x=-2x.e^{y-x^2+5}+8x^3=0\\z'_y=e^{y-x^2+5}-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(8x^2-2e^{y-x^2+5}\right)=0\\y-x^2+5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x=0\\y-x^2+5=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)

Th2: \(\left\{{}\begin{matrix}4x^2=e^{y-x^2+5}\\y-x^2+5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x^2=1\\y-x^2+5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=-\frac{19}{4}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-\frac{1}{2}\\y=-\frac{19}{4}\end{matrix}\right.\)

Ta có các điểm dừng: \(M\left(0;-5\right)\) ; \(N\left(\frac{1}{2};-\frac{19}{4}\right)\) ; \(P\left(-\frac{1}{2};-\frac{19}{4}\right)\)

\(z''_{xx}=\left(4x^2-2\right)e^{y-x^2+5}+24x^2\)

\(z''_{xy}=-2x.e^{y-x^2+5}\) ; \(z''_{yy}=e^{y-x^2+5}\)

Tại M: \(A=-2\) ; \(B=0\) ; \(C=1\Rightarrow B^2-AC=2>0\Rightarrow M\) không phải cực trị

Tại N: \(A=5>0\) ; \(B=-1\) ; \(C=1\Rightarrow B^2-AC=-4< 0\Rightarrow\) hàm đạt cực tiểu tại N

Tại P: \(A=5>0\) ; \(B=1\) ; \(C=1\Rightarrow B^2-AC=-4< 0\Rightarrow\) hàm đạt cực tiểu tại P

14 tháng 6 2020

Cảm ơn b

NV
18 tháng 7 2021

\(y'=\dfrac{x^2-2x+2m-2}{\left(x-1\right)^2}\)

Hàm có 2 cực trị \(\Leftrightarrow y'=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}2m-3\ne0\\\Delta'=1-\left(2m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow m< \dfrac{3}{2}\)

Khi đó, phương trình đường thẳng qua 2 cực trị có dạng:

\(y=\dfrac{2x-2m}{1}=2x-2m\)

Đường thẳng này có cùng hệ số góc với d nên chúng song song nhau