Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
$x+y=xy$
$\Leftrightarrow xy-x-y=0$
$\Leftrightarrow x(y-1)-(y-1)=1$
$\Leftrightarrow (y-1)(x-1)=1$
Do $x,y$ nguyên nên $x-1,y-1$ cũng nguyên. Mà tích của chúng bằng 1 nên ta xét các TH sau:
TH1: $x-1=1, y-1=1\Rightarrow x=2; y=2$ (tm)
TH2: $x-1=-1, y-1=-1\Rightarrow x=0; y=0$ (tm)
b/
$5xy-2y^2-2x^2=-2$
$\Leftrightarrow 2x^2-5xy+2y^2=2$
$\Leftrightarrow (2x-y)(x-2y)=2$
Do $x,y$ nguyên nên $2x-y, x-2y$ cũng là số nguyên. Mà tích của chúng bằng 2 nên ta xét các TH sau:
TH1: $2x-y=1, x-2y=2$
$\Rightarrow x=0; y=-1$
TH2: $2x-y=-1, x-2y=-2$
$\Rightarrow x=0; y=1$
TH3: $2x-y=2, x-2y=1$
$\Rightarrow x=1; y=0$
TH4: $2x-y=-2, x-2y=-1$
$\Rightarrow x=-1; y=0$
Có \(x^2+9z^2\ge6xz\)
\(y^2+16z^2\ge8yz\)
\(\Rightarrow x^2+y^2+25z^2\ge6xz+8yz\)
Dấu = xảy ra <=> \(x=3z;y=4z\)
Có \(3x^2+2y^2+z^2=240\)
\(\Leftrightarrow27z^2+32z^2+z^2=240\)
\(\Leftrightarrow z^2=4\)
\(\Leftrightarrow\left[{}\begin{matrix}z=2\\z=-2\end{matrix}\right.\)
TH1: \(z=2\Rightarrow x=6;y=8\) (Thỏa)
TH2: \(z=-2\Rightarrow x=-6;y=-8\) (Thỏa)
Vậy...
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
`x^2-6xy+13y^2=100`
`<=> (x^2-6xy+9y^2)+4y^2=100`
`<=> (x-3y)^2+4y^2=100`
Mà `100=0^2+10^2=6^2+8^2`
`=>` Chia trường hợp giải `x;y`
Kết luận: Vậy `(x;y)=(15;5),(10;0),(-15;-5),(-10;0),(18;4),(17;3),(6;4),(-1;-3),(-6;-4),(1;3),(-18;-4),(-17;-3)`
ban hoc lop 8 to hc lop 5