K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 6 2021

Có \(x^2+9z^2\ge6xz\)

\(y^2+16z^2\ge8yz\)

\(\Rightarrow x^2+y^2+25z^2\ge6xz+8yz\)

Dấu = xảy ra <=> \(x=3z;y=4z\)

Có \(3x^2+2y^2+z^2=240\)

\(\Leftrightarrow27z^2+32z^2+z^2=240\)

\(\Leftrightarrow z^2=4\)

\(\Leftrightarrow\left[{}\begin{matrix}z=2\\z=-2\end{matrix}\right.\)

TH1: \(z=2\Rightarrow x=6;y=8\) (Thỏa)

TH2: \(z=-2\Rightarrow x=-6;y=-8\) (Thỏa)

Vậy...

DD
3 tháng 6 2021

\(x^2+y^2+25z^2-6xz-8yz=0\Leftrightarrow\left(x-3z\right)^2+\left(y-4z\right)^2=0\Leftrightarrow\hept{\begin{cases}x=3z\\y=4z\end{cases}}\)

\(3x^2+2y^2+z^2=3.\left(3z\right)^2+2.\left(4z\right)^2+z^2=60z^2=240\Leftrightarrow z=\pm2\).

Vậy ta có hai nghiệm thỏa mãn là: \(\left(6,8,2\right)\)và \(\left(-6,-8,-2\right)\).

19 tháng 10 2017

Vì x+y+z=6 và \(x^2+y^2+z^2=12\)

Ta có \(x^2+y^2+z^2-x+y+z=12-6\)

Rút gọn: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=6\)

=> \(x+y+z=x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\)

Tìm x \(\Rightarrow x\left(x-1\right)=x\Rightarrow x-1=1\Rightarrow x=2\)

Tìm y \(\Rightarrow y\left(y-1\right)=y\Rightarrow y-1=1\Rightarrow y=2\)

Tìm z \(\Rightarrow z\left(z-1\right)=z\Rightarrow z-1=1\Rightarrow z=2\)

Vậy \(x=y=z=2\)

19 tháng 10 2017

\(\hept{\begin{cases}x^2+y^2+z^2=12\\x+y+z=6\end{cases}}\)

Ta có \(\left(x+y+z\right)^2=36\)

\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=36\)

\(\Leftrightarrow12+2xy+2yz+2xz=36\)

\(\Leftrightarrow2xy+2yz+2xz=24\Leftrightarrow xy+yz+xz=12\)

\(\Rightarrow x^2+y^2+z^2=xy+yz+xz=12\)

Mặt khác ta có \(x^2+y^2+z^2\ge xy+yz+xz\)

Dấu \(=\)xảy ra khi \(x=y=z\)

Vậy \(x=y=z=2\)

23 tháng 4 2017

Bạn CM x=y=z=1

Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2

Cuối cùng bạn sẽ kết luận:

Vì 1/2 ≤ 1/2

Nên ...(biểu thức)...≤1/2

23 tháng 4 2017

CM x=y=z kiểu gì vậy???

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D

\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{2}{xy}-\frac{1}{z^2}\)

Khai triển cả 2 vế ta được \(\left(\frac{1}{y}+\frac{1}{z}\right)^2+\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)

=>\(\hept{\begin{cases}\frac{1}{y}+\frac{1}{z}=0\\\frac{1}{x}+\frac{1}{z}=0\end{cases}}\)=>\(\frac{1}{x}=\frac{1}{y}\Rightarrow x=y\)

=>\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{x}+\frac{1}{z}=2\Rightarrow\frac{4}{x^2}+\frac{4}{xz}+\frac{1}{z^2}=4\)(1)

\(\frac{2}{xy}-\frac{1}{z^2}=\frac{2}{x^2}-\frac{1}{z^2}=4\)(2)

Từ (1) và (2) suy ra

\(\frac{2}{x^2}+\frac{4}{xz}+\frac{2}{z^2}=0\Rightarrow\frac{1}{x^2}+\frac{2}{xz}+\frac{1}{z^2}=0\Rightarrow\left(\frac{1}{x}+\frac{1}{z}\right)^2=0\)\(\Rightarrow\frac{1}{x}+\frac{1}{z}=0\Rightarrow x=y=-z\)

=> \(P=\left(x+2y+z\right)^{2019}=\left(2y\right)^{2019}\)

à thêm cái này nữa. Sorry viết thiếu

Vì x=y=-z\(\Rightarrow\frac{2}{x}-\frac{1}{x}=2\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}.\)

lúc đó  \(P=\left(2.\frac{1}{2}\right)^{2019}=1\)

28 tháng 1 2021

111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111+11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111-2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222=?

28 tháng 1 2021

8

555566655

5665656746565656+5965=?

17 tháng 2 2020

Ta có : \(3\left(x^2+y^2+z^2\right)=\left(x+y+z\right)^2\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Leftrightarrow2\left(x^2+y^2+z^2-xy-yz-zx\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow x=y=z\)

Khi đó : \(3x^{2018}=27^{673}=\left(3^3\right)^{673}=3^{2019}\)

\(\Leftrightarrow x^{2018}=3^{2018}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=z=3\\x=y=z=-3\end{cases}}\)

Đến đây tự tính A nha!