K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3

                   2\(x\) = 3y ⇒  \(x\) = \(\dfrac{3}{2}\)y

                    4y = 5z ⇒ z = \(\dfrac{4}{5}y\)

               Thay \(x=\dfrac{3}{2}y;\)  z = \(\dfrac{4}{5}y\)  vào \(x+y+z\) = 11 ta có:

                        \(\dfrac{3}{2}y\) + y + \(\dfrac{4}{5}y\) = 11

                           \(\dfrac{33}{10}\)y           = 11

                               y            = 11 : \(\dfrac{33}{10}\)

                              y             = \(\dfrac{10}{3}\)

                               \(x\) = \(\dfrac{3}{2}\) x \(\dfrac{10}{3}\) = 5

                               z = \(\dfrac{4}{5}\) x \(\dfrac{10}{3}\) = \(\dfrac{8}{3}\)

Vậy \(\left(x;y;z\right)\) = (5; \(\dfrac{10}{3}\)\(\dfrac{8}{3}\)

                 

9 tháng 4 2016

2x=3y nên x/3=y/2 nên x/15=y/10

4y=5z nên y/5=z/4 nên y/10=z/8

Nên x/15=y/10=z/8

Aps dụng tính chất dãy tỉ số bằng nhau ta có:

x/15=y/10=z/8=x+y+x/15+10+8=11/33=1/3

Đến đây dễ rồi nha bạn

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3\times5}=\frac{y}{2\times5}\Rightarrow\frac{x}{15}=\frac{y}{10}\) (1)

\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{5\times2}=\frac{z}{4\times2}\Rightarrow\frac{y}{10}=\frac{z}{8}\) (2)

Từ (1) và (2):

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{11}{33}=\frac{1}{3}\)

  • \(\frac{x}{15}=\frac{1}{3}\Rightarrow x=\frac{1}{3}\times15=5\)
  • \(\frac{y}{10}=\frac{1}{3}\Rightarrow y=\frac{1}{3}\times10=\frac{10}{3}\)
  • \(\frac{z}{8}=\frac{1}{3}\Rightarrow z=\frac{1}{3}\times8=\frac{8}{3}\)

Theo bài ra ta cs 

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)

\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)

T lại cs 

\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{x}{10}=\frac{z}{8}\left(2\right)\)

Từ (1);(2) \(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

ADTC dãy tỉ số bằng nhau ta cs 

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{2x+3y-4z}{2.15+3.10-4.8}=\frac{56}{28}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}\Rightarrow\hept{\begin{cases}x=30\\y=20\\z=16\end{cases}}}\)

6 tháng 3 2020

\(2x=3y;4y=5z\) => \(8x=12y;12y=15z\)

=>  \(\frac{8x}{120}=\frac{12y}{120}=\frac{15z}{120}\)=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)

=>   \(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2x}{30}=\frac{3y}{30}=\frac{4z}{32}=\frac{2x+3y-4z}{30+30-32}=\frac{56}{28}\)

=> \(\frac{2x}{30}=2=>2x=60=>x=30\)

\(\frac{3y}{30}=2=>3y=60=>y=20\)

\(\frac{4z}{32}=2=>4z=64=>z=16\)

3 tháng 9 2016

2x=3y=5z=>\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{-33}{11}=-3\)

\(\Rightarrow\begin{cases}x=\left(-3\right).15=-45\\y=\left(-3\right).10=-30\\z=\left(-3\right).6=-18\end{cases}\)

Vậy ...

3 tháng 9 2016

\(2x=3y=5z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=-\frac{33}{4}=-8,25\)

\(\Rightarrow\frac{x}{2}=-8,25\Rightarrow x=-16,5\)

\(\Rightarrow\frac{y}{3}=-8,25\Rightarrow y=-24,75\)

\(\frac{z}{5}=-8,25\Rightarrow z=-41,25\)

12 tháng 9 2016

--33 là 33 à

12 tháng 9 2016

x - y + z = - 33 à bạn

9 tháng 6 2018

a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)

\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)

Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)

Ta có : \(4(15k)-3(10k)+5(8k)=7\)

\(\Rightarrow60k-30k+40k=7\)

\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)

Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)

\(y=\frac{1}{10}\cdot10=1\)

Mình chỉ giải có chừng này thôi

Câu b mk làm sau

\(xy+2x-y=7\)

\(xy+2x=7+y\)

\(x\left(y+2\right)=7+y\)

\(x=\frac{7+y}{y+2}\)

14 tháng 12 2021

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{x-y-z}{15-10-8}=\dfrac{30}{-3}=-10\\ \Rightarrow\left\{{}\begin{matrix}x=-150\\y=-100\\z=-80\end{matrix}\right.\)

2 tháng 10 2016

\(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)

\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\) và \(x+y+z=40\)

Áp dụng tc dãy tỉ:

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)

\(\Rightarrow\begin{cases}\frac{x}{15}=\frac{40}{31}\\\frac{y}{10}=\frac{40}{31}\\\frac{z}{6}=\frac{40}{31}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)

 

2 tháng 10 2016

=>\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

Áp dụng tính chất dãy tỉ số = nhau

*\(\frac{x}{2}=4=>x=8\)

*\(\frac{y}{3}=4=>y=12\)

*\(\frac{z}{5}=4=>z=20\)

vậy:\(x=8;y=12;z=20\)

2 tháng 10 2016

Ta có :

\(2x=3y=5z\)

=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có :

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y+z}{15+10+6}=\frac{40}{31}\)

\(\Rightarrow\begin{cases}x=\frac{600}{31}\\y=\frac{400}{31}\\z=\frac{240}{31}\end{cases}\)

2 tháng 10 2016

\(2x=3y=5z\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{40}{10}=4\)

  • \(\frac{x}{2}=4\Rightarrow x=8\)
  • \(\frac{y}{3}=4\Rightarrow y=12\)
  • \(\frac{z}{5}=4\Rightarrow z=20\)

Vậy: \(\left(x,y,z\right)=\left(8,12,20\right)\)

3 tháng 1 2022

\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2};\dfrac{y}{5}=\dfrac{z}{4}\\ \Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{4x-3y+5z}{60-30+40}=\dfrac{7}{70}=\dfrac{1}{10}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{15}{10}=\dfrac{3}{2}\\y=1\\z=\dfrac{8}{10}=\dfrac{4}{5}\end{matrix}\right.\)

15 tháng 12 2021

1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)

2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)

3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)

Áp dụng t/c dtsbn:

\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)