Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\\z=3k\end{cases}}\)
Khi đó P = \(\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{2}{3}\)
Theo bài ra, ta có :
x:y:z=5:4:3 ⇒x/5=y/4=z/5⇒
Đặt x/5=y/4=z/3=kx5=y4=z3=k ⇒x=5k
y=4k
z=3k⇒x=5ky=4kz=3k
⇒P=x+2y−3z/x−2y+3z=5k+8k−9k/5k−8k+9k=4k/6k=23
Vậy P=23
Ta có: \(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+\frac{x}{z}\right|\ge0\left(\hept{\begin{cases}\forall x,y,z\\z\ne0\end{cases}}\right)\)
\(\Rightarrow\hept{\begin{cases}2x-3y=0\\2y+3z=0\\x+y+\frac{x}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{3}{2}y-\frac{2}{3}y+\frac{\frac{3}{2}y}{-\frac{2}{3}y}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{5}{6}y=\frac{9}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y=\frac{81}{20}\\y=\frac{27}{10}\\z=\frac{-9}{5}\end{cases}}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
áp đụng t/c dãy tỉ số = nhau ta dc :
\(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)
\(=>x=-5.3=-15\)
\(=>y=-5.-4=20\)
\(=>z=-5.5=-25\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{3}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y-3z}{3+8-15}=\frac{20}{-4}=-5\)
=> x = -5 . 3 = -15
y = -5 . 4 = -20
z = -5 . 5 = -25
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
y+z+t-nx/x=z+t+x-ny/y
\(\Leftrightarrow\)y=x
y+z+t-nx/x=t+x+y-nz/z
\(\Leftrightarrow\)z=x
z+t+x-ny/y=x+y+z-nt/t
\(\Leftrightarrow\)t=y
ta có y=x; z=x; t=y \(\Rightarrow\) x=y=z=t
Vậy ta có x=y=t=z
vậy phương trình P trở thành P=3z-3z=0
Bạn có gì thắc mắc về bài giải, nói cho mình để mình giải đáp cho.