\(x^2+2y^2=2377\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

\(x^2\) có chữ số tận cùng có thể  là : 0;1;4;6;9

\(2y^2\)có chữ số tận cùng có thể  là : 0 ;2;8

Vậy \(x^2+2y^2\)có chữ số tận cùng  7  => \(x^2\)có chữ số tận cùng là 9 và \(2y^2\)có chữ số tận cùng là 8 nên y2 có tận cùng là 4

=> y có tận cùng là 2 hoặc 8

\(2y^2\)< 2377 => \(y\)< 35  

=> y \(\in\){2;8;12;18;22;28;32}

Thay y lần lượt các giá trị trên  vào đề bài để tìm  x .

Bạn làm tiếp nha.

26 tháng 11 2016

cho day so Un duoc xac dinh boi U1=2,U2=1,Un=2=nUn+1-3Un+n2-2.tinh U15 va tinh tong cua 16 so hang dau tien cua day

19 tháng 11 2017

Ta có:\(x\left(x^2+x+1\right)=4y\left(y-1\right)\)      (*)

\(\Leftrightarrow x^3+x^2+x+1=4y^2-4y+1\)

\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=\left(2y-1\right)^2\)     \(\left(1\right)\)

Gọi \(d\inƯC\left(x+1;x^2+1\right)\)với \(d\in Z\)

\(\Rightarrow\hept{\begin{cases}x+1⋮d\\x^2+1⋮d\end{cases}\Rightarrow x^2+1-x\left(x+1\right)⋮d}\)

\(\Rightarrow1-x⋮d\)

\(\Rightarrow1-x+x+1⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà \(\left(2y-1\right)^2\)là số chính phương lẻ nên x+1 và x2+1 cũng là số lẻ

\(\Rightarrow d=\pm1\)

\(\Rightarrow x+1\)và \(x^2+1\)nguyên tố cùng nhau

Do đó để phương trình có nghiệm thì x+1 và x2+1 cũng là số chình phương

Giả sử: + \(x^2+1=m^2\)

\(\Rightarrow m^2-x^2=1\)

\(\Rightarrow x=0\)(bạn tự tính)

    +\(x+1=n^2\)

\(\Rightarrow x=0\)(bạn tự tính)

Thay x=0 vào phương trình (*)=> y=-1;0

Vậy.......

28 tháng 4 2020

Xét \(\Delta=m^2+8>0\) nên phương trình luôn có nghiệm

Theo Viete \(x_1+x_2=-m\left(1\right);x_1x_2=-2\)

Mà \(x_1^2=4x_2^2\Leftrightarrow x_1=2x_2\left(h\right)x_1=-2x_2\)

Bạn thay vào ( 1 ) là ra pt bậc nhất 1 ẩn,khi đó dể nè :))

18 tháng 6 2015

a) có nghiệm => \(\Delta=16-4\left(m+1\right)=12-4m\ge0\Leftrightarrow m\le3\)

áp dụng hệ thức vi ét ta có: x1+x2=4;   x1.x2=m+1

b) \(x1^2+x2^2=10\Leftrightarrow\left(x1+x2\right)^2-2x1x2=10\Leftrightarrow16-2\left(m+1\right)=10\Leftrightarrow m=2\)(t/m đk)

c) \(x1^3+x2^3=34\Leftrightarrow\left(x1+x2\right)^3-3x1.x2\left(x1+x2\right)=34\Leftrightarrow64-12\left(m+1\right)=34\Leftrightarrow m=\frac{3}{2}\)(t/m đk)

2 tháng 5 2017

a/ Thay m=-1 vào phương trình (1) ta được:

\(x^2-x-2=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy khi m=-1 thì phương trình (1) có \(S=\left\{2;-1\right\}\)

b/ Xét phương trình (1) có

\(\Delta=\left(m+2\right)^2-4.2m\)

= \(m^2-4m+4=\left(m-2\right)^2\)

Ta có: \(\left(m-2\right)^2\ge0\) với mọi m

\(\Leftrightarrow\Delta\ge0\) với mọi m

\(\Rightarrow\) Phương trình (1) có 2 nghiệm với mọi m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1.x_2=2m\end{matrix}\right.\)

Theo đề bài ta có:

\(\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le5\)

\(\Leftrightarrow m^2+2m-1\le0\)

\(\Leftrightarrow\left(m+1-\sqrt{2}\right)\left(m+1+\sqrt{2}\right)\le0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m+1-\sqrt{2}\ge0\\m+1+\sqrt{2}\le0\end{matrix}\right.\\\left\{{}\begin{matrix}m+1-\sqrt{2}\le0\\m+1+\sqrt{2}\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m\ge-1+\sqrt{2}\\m\le-1-\sqrt{2}\end{matrix}\right.\\\left\{{}\begin{matrix}m\le-1+\sqrt{2}\\m\ge-1-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-1+\sqrt{2}\le m\le-1-\sqrt{2}\left(ktm\right)\\-1-\sqrt{2}\le m\le-1+\sqrt{2}\left(tm\right)\end{matrix}\right.\)

vậy để phương trình (1) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+x_2\right)^2-x_1x_2\le5\) thì \(-1-\sqrt{2}\le m\le-1+\sqrt{2}\)

1 tháng 5 2017

mày ó

c cứt à????<3

a. vs m=-1 ,thay vào pt(1) ,ta đc :

x^2 -(-1+2)x +2.(-1) =0

<=>x^2 -x-2 =0

Có : đenta = (-1)^2 -4.(-2) =9 >0

=> căn đenta =căn 9 =3

=> X1 =2 ; X2=-1

Vậy pt (1) có tập nghiệm S={-1;2}

12 tháng 5 2016

CHị phương em mới học lớp 7

12 tháng 5 2016

vì x>= 2y

=> P=\(\frac{2\cdot x^2+y^2-2\cdot x\cdot y}{xy}>=\frac{2\cdot\left(2y\right)^2+y^2-2\cdot\left(2y\right)\cdot y}{2y\cdot y}\)=\(\frac{8\cdot y^2+y^2-4y^2}{2y^2}=\frac{5y^2}{2y^2}=\frac{5}{2}\)

Vậy min P=5/2

Dấu = khi x=2y

2 tháng 11 2016

Đặt \(2377-9y^2-6y=x^2\Leftrightarrow\left(3y+1\right)^2=2378-x^2\)

\(\Rightarrow\left(3y+1\right)^2\le2378< 2401=49^2\)

Từ đó suy ra được \(-49\le3y+1\le49\Leftrightarrow-16\le y\le16\)

Vậy y thuộc khoảng trên. Bạn tự liệt kê ra nhé ^^