K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 1 2022

Vì \(\left(a,b\right)=12\)nên ta đặt \(a=12m,b=12n,m>0,n>0,\left(m,n\right)=1\).

\(\frac{a}{b}=\frac{12m}{12n}=\frac{m}{n}=\frac{49}{56}=\frac{7}{8}\)

suy ra \(m=7,n=8\)

\(\Rightarrow a=84,b=96\).

29 tháng 5 2015

\(\frac{a}{b}=\frac{49}{56}=\frac{7}{8}\)

ƯCLN(a ; b) = 12 chứng tỏ ta đã chia cả tử và mẫu của phân số \(\frac{a}{b}\) cho 12 để \(\frac{a}{b}\) rút gọn thành \(\frac{7}{8}\)

Vậy a = 7 . 12 = 84  ;  b = 8 . 12 = 96

 

15 tháng 1 2016

3/

a/b = 49/56 = 7/8

a = 7*12 = 84

b = 8*12 = 96

14 tháng 1 2016

cmr đầu tiên đúng  câu 3 = 49/56  vậy thì kết quả bằng 84/96

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

a, b: Bạn xem lại đề.

c.

Vì $ƯCLN(a,b)=12$ và $a>b$ nên đặt $a=12x, b=12y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=12x+12y=120\Rightarrow x+y=10$

Vì $x>y, (x,y)=1$ nên $x,y$ có thể nhận giá trị là:

$(x,y)=(9,1), (7,3)$

$\Rightarrow (a,b)=(108. 12), (84, 36)$

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

d.

Vì $ƯCLN(a,b)=28$ và $a>b$ nên đặt $a=28x, b=28y$ với $x,y$ là stn, $x>y$, $(x,y)=1$. Khi đó:

$a+b=28x+28y=224$

$\Rightarrow x+y=8$

Vì $x>y$ và $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(7,1), (5,3)$

$\Rightarrow (a,b)=(196, 28), (140, 84)$

20 tháng 8 2019

Bài 1:

Ta có ab=ƯCLN (a,b). BCNN (a,b)

=>ƯCLN (a,b)=ab:BCNN (a,b)

=>ƯCLN (a,b)=2940:210=14

Ta có: a=14. a' và b=14.b'

Ta có: a.b=2940

Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940

=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1

Ta có:

a'13515
b'15531

=>

a144270210
b210704214

Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.

2 bài còn lại làm tương tự !

30 tháng 1 2020

a) Vì (a,b)=12 nên ta có : \(\hept{\begin{cases}a⋮12\\b⋮12\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\)

Vì a+b=120

\(\Rightarrow\)12m+12n=120

\(\Rightarrow\)12(m+n)=120

\(\Rightarrow\)m+n=10

Mà (m,n)=1 nên ta có bảng sau :

m     1          9          3          7

n      9          1          7          3

a      12        108      36        84

b      108       12       84        36

Vậy (a;b)\(\in\){(12;108);(108;12);(36;84);(84;36)}

30 tháng 1 2020

Chào bạn, tớ sẽ giúp bạn làm phần b

Vì (a,b)=34 nên ta có : a và b đều chia hết cho 34

=> a=34m; b=34n và m,n có ƯCLN=1

Mà ab=6936

=> 34m.34n=6936

=> 1156m.n=9636

=> mn=2409/289  (là phân số vì 6936 không chia hết cho 34.34=1156. Đầu bài có vấn đề không vậy???)

Đó là ý kiến riêng thôi ạ. Nếu sai thì bảo nhé. Chúc bạn học tốt!!!

4 tháng 7 2015

Lắm thế??? Thiên tài đánh máy hả bạn?

4 tháng 7 2015

lắm thế thì có gì đâu mà ****

9 tháng 11 2021

1.vì ƯCLN 2 số là 28 nên đặt a=28k, b=28p, k,p là số tự nhiênta có 28(k+p)=224=&gt;k+q=8vậy các cặp (a, b) thỏa mãn là (28,196), (56, 168), (84,140), (112, 112)và các hoán vị của nó.

2.Dựa vào dữ kiện đề bài,ta có:

a=18k;b=18p.(k,p nguyên tố cùng nhau)

Tích:a.b=18k.18p

=324.k.p=1944

=>k.p=6.

=>k bằng 3;p=2.

Vậy a=54;p=36.

3.ĐK a > 12 ( số chia phải lớn hơn dư )

156 chia a dư 12 => 156 - 12 chia hết cho a => 144 chia hết cho a (1)

280 chia a dư 10 => 280 - 10 chia hết cho a => 270 chia hết cho a (2)

Từ (1) và (2) => 144 ; 270 chia hết cho a 

=> a thuộc UC (144;270)

UCLN ( 144 ; 270 ) =  18 

=> a thuộc ( 18 ; 9 ; 6 ; 3 ; 1 ) 

a > 12 => a= 18