Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)
<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)
<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên
Có 2 TH
+) Trường hợp 1
\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn
+ Trương hợp 2
\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn
VÂỵ ....
Ta có:y= \(\frac{x\left(x-2\right)\left(x+2\right)+\left(x-2\right)+3}{x-2}\) nên x-2 thuộc ước của 3. Xong thay ước 3 vào là được
xy-2y-3= 3x - x^2
<=> x^2 + xy - 2y - 3x -3 =0
<=> x.(x+y) - 2.(y+x) -(x+3) =0
<=> (x+y).(x-2) - ( x-2) -5 = 0
<=> (x-2)(x+y-1) =5
rồi xét ước của 5
Viết pt trên thành pt bậc 2 đối với x:
\(2x^2-x\left(y+1\right)-\left(2y-1\right)=0\) (1)
(1) có nghiệm \(\Leftrightarrow\Delta=\left(y+1\right)^2+8\left(2y-1\right)\ge0\)
\(\Leftrightarrow y^2+18y-7\ge0\Leftrightarrow\orbr{\begin{cases}y\le-9-2\sqrt{22}\\y\ge-9+2\sqrt{22}\end{cases}}\)
Ta cần có \(\Delta\) là số chính phương.Tức là:
\(y^2+18y-7=k^2\Leftrightarrow\left(x+9\right)^2-k^2=88\)
\(\Leftrightarrow\left(x+9-k\right)\left(x+9+k\right)=88\)
Gắt gắt,đợi tí nghĩ cách khác xem sao,cách này thử sao nổi -_-
\(x^3-xy+1=2y-x\)
\(\Leftrightarrow x^3+x+1=xy+2y\)
\(\Leftrightarrow x^3+x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{x^3+x+1}{x+2}\)
-Vì \(x,y\) là các số nguyên nên:
\(\left(x^3+x+1\right)⋮\left(x+2\right)\)
\(\Rightarrow\left(x^3+2x^2-2x^2-4x+5x+10-9\right)⋮\left(x+2\right)\)
\(\Rightarrow\left[x^2\left(x+2\right)-2x\left(x+2\right)+5\left(x+2\right)-9\right]⋮\left(x+2\right)\)
\(\Rightarrow\left[\left(x+2\right)\left(x^2-2x+5\right)-9\right]⋮\left(x+2\right)\)
-Vì \(\left(x+2\right)\left(x^2-2x+5\right)⋮\left(x+2\right)\)
\(\Rightarrow9⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\in\left\{1;3;9;-1;-3;-9\right\}\)
\(\Rightarrow x\in\left\{-1;1;7;-3;-5;-11\right\}\) (tmđk)
*Với \(x=-1\) thì \(y=\dfrac{\left(-1\right)^3+\left(-1\right)+1}{\left(-1\right)+2}=-1\) (tmđk)
*Với \(x=1\) thì \(y=\dfrac{1^3+1+1}{1+2}=1\)(tmđk)
*Với \(x=7\) thì \(y=\dfrac{7^3+7+1}{7+2}=39\)(tmđk)
*Với \(x=-3\) thì \(y=\dfrac{\left(-3\right)^3+\left(-3\right)+1}{\left(-3\right)+2}=29\)(tmđk)
*Với \(x=-5\) thì \(y=\dfrac{\left(-5\right)^3+\left(-5\right)+1}{\left(-5\right)+2}=43\)(tmđk)
*Với \(x=-11\) thì \(y=\dfrac{\left(-11\right)^3+\left(-11\right)+1}{\left(-11\right)+2}=149\)(tmđk)