K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

\(\frac{x}{8}=\frac{y}{12}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)

x=-3.8=-24

y=-3.12=-36

25 tháng 2 2016

Ta có : \(\frac{x}{8}=\frac{y}{12}=\frac{2x}{16}=\frac{3y}{36}=\frac{2x+3y}{16+36}=\frac{-156}{52}=-3\)

=> x = -3.8 = -24 ; y = -3.12 = -36

28 tháng 10 2023

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

25 tháng 4 2018

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

25 tháng 4 2018

a+b=c+d => a=c+d-b 

thay vào ab+1=cd 

=> (c+d-b)*b+1=cd 

<=> cb+db-cd+1-b^2=0 

<=> b(c-b)-d(c-b)+1=0 

<=> (b-d)(c-b)=-1 

a,b,c,d,nguyên nên (b-d) và (c-b) nguyên 

mà (b-d)(c-b)=-1 nên có 2 TH: 

TH1: b-d=-1 và c-b=1 

<=> d=b+1 và c=b+1 

=> c=d 

TH2: b-d=1 và c-b=-1 

<=> d=b-1 và c=b-1 

=> c=d 

Vậy từ 2 TH ta có c=d.

24 tháng 8 2016

xy + 3y - 5x = 9 nhé...mình viết nhầm ạ

 

24 tháng 8 2016

11=1x11=11x1=-1x-11=-11x-1

TH1:

2x-1=1                            y+4=11

2x=2                                y=7

x=1

TH2:

2x-1=11                            y+4=1

2x=12                                y=-5

x=6

TH3:

2x-1=-1                            y+4=-11

2x=-2                                y=-15

x=-1

TH4:

2x-1=-11                            y+4=-1

2x=-10                                y=-5

x=-5

11 tháng 2 2016

\(\frac{x}{8}=\frac{y}{12}\Rightarrow2.8+3.12=\frac{52}{13}=4\)

=> x = 4 . 8 = 32

y = 4 . 12 = 48 

11 tháng 2 2016

x ​​trên 8 =y trên 12=>2x trên 16 =3y trên 36 

áp dụng tính chất của dãy tỉ số bằng nhau .Ta có:

2x trên 16 =3y trên 36=2x+3y trên 16+36=13 trên 52=1 trên 4

=>x=1 trên 4 nhân 8=2

y=1 trên 4 nhân 12 =3

3 tháng 3 2021

x=5

y=3

có thẻ sai

 

1 tháng 4 2016

Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2

=> 2x + 3y chia hết cho 2

=> 2x chia hết cho 2

=> 3y chia hết cho 2

Vì ƯC(2;3) = 1

=> 3y chia hết cho 2 => y chia hết cho 2

=> 3y ≤ 14

=> y ≤ 14/3

=> y ≤ 4

=> y = 2 ; y = 4

Với y = 2 => 2x + 3 - 2 = 14=> x = 4

       y = 4 => 2x + 3 . 4 = 14 => x = 1

Vậy với x = 2 thì y = 4

              x = 4 thì y = 2

             

1 tháng 4 2016

Ta có : 14 = 2 . 7 => 2 . 7 chia hết cho 2

=> 2x + 3y chia hết cho 2

=> 2x chia hết cho 2

=> 3y chia hết cho 2

Vì ƯC(2;3) = 1

=> 3y chia hết cho 2 => y chia hết cho 2

=> 3y ≤ 14

=> y ≤ 14/3

=> y ≤ 4

=> y = 2 ; y = 4

Với y = 2 => 2x + 3 - 2 = 14=> x = 4

       y = 4 => 2x + 3 . 4 = 14 => x = 1

Vậy với x = 2 thì y = 4

              x = 4 thì y = 2

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
$2x-xy+3y=9$

$\Rightarrow x(2-y)+3y=9$

$\Rightarrow x(2-y)-3(2-y)=3$

$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:

TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm) 

TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương) 

TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)

TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)

=>3y(2x+1)-10x-5=7

=>(2x+1)(3y-5)=7

=>\(\left(2x+1;3y-5\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)(Vì x,y là số nguyên)

=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(3;2\right)\right\}\)