Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + 2x - 8y2 = 41
<=> (x + 1)2 - 8y2 = 42 (1)
Ta có:
\(-8y^2⋮2\) và \(42⋮2\) \(\Rightarrow\left(x+1\right)^2⋮2\Rightarrow x⋮̸2\)
Đặt x = 2k + 1 \(\left(k\in Z\right)\), ta có:
\(\left(1\right)\Leftrightarrow\left(2k+1+1\right)^2-8y^2=42\)
\(\Leftrightarrow4\left(k+1\right)^2-8y^2=42\)
\(\Leftrightarrow2\left(k+1\right)^2-4y^2=21\)
Ta có:
\(VT⋮2\) mà \(VP⋮̸2\)
Vậy pt không có nghiệm nguyên.
Giải:
X2+2x-8y2=41
<=> X2+2x+1-8y2=41+1
<=>(x+1)2-8y2=42
<=>(x+1)2=42+8y2.
<=>(x+1)2=2(21+2y2)
· 21+2y2 là số lẻ, 2 là số chẳn.
· Do đó không có (x+1)2 thỏa yêu cầu bài toán
Ngọc ơi sai rồi. cái bước rút thừa số chung đấy 2*2=4 chứ đâu có bằng 8
Ta có:
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
Ta thấy:
\(\left(x+1\right)^2\) là số chẵn nên chia hết cho \(4\)
\(42+8y^2\) không chia hết cho \(4\)
Vậy không có số nguyên \(x,y\) nào thỏa mãn đề bài
Ta có: \(9x^2-8y^2=15⋮3\)
=> \(8y^2⋮3\)=> \(y^2⋮3\)=> \(y⋮3\)
Đặt y = 3 t ( t là số nguyên )
ta có: \(9x^2-8.9t^2=15\)
=> \(15=9x^2-8.9t^2⋮9\) vô lí
Vậy không tồn tại cặp số nguyên x; y.
Tìm x,y biết x^2+2y-8y^2=41
Biết x thuộc Q và 0<x<1. Cm x^n < x với n thuộc n , n lớn hơn hoặc bằng 2
\(x^2+2x-8y^2=41\)
\(\Leftrightarrow x^2+2x+1-8y^2=41+1\)
\(\Leftrightarrow\left(x+1\right)^2-8y^2=42\)
\(\Leftrightarrow\left(x+1\right)^2=42+8y^2\)
\(\Leftrightarrow\left(x+1\right)^2=2\left(21+2y^2\right)\)
- \(21+2y^2\) là số lẻ, 2 là số chẵn.
- Do đó không có \(\left(x+1\right)^2\) để thỏa mãn yêu cầu bài toán.