K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2020

Xét \(x^n-x=x\left(x^{n-1}-1\right)\)

Vì \(0< x< 1\)

\(\Rightarrow x^{n-1}-1< 0;x>0\)

\(\Rightarrow x^n-x< 0\)

\(\Rightarrow x^n< x\) 

18 tháng 3 2017

Giải:

X2+2x-8y2=41

<=> X2+2x+1-8y2=41+1

<=>(x+1)2-8y2=42

<=>(x+1)2=42+8y2.

<=>(x+1)2=2(21+2y2)

·        21+2y2 là số lẻ, 2 là số chẳn.

·        Do đó không có (x+1)2 thỏa yêu cầu bài toán

17 tháng 12 2017

Ngọc ơi sai rồi. cái bước rút thừa số chung đấy 2*2=4 chứ đâu có bằng 8

5 tháng 7 2017

 x=1 nha bạn

9 tháng 6 2018

Bài 1 :

\(3x+5=2\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)

\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)

\(\Leftrightarrow\frac{11}{2}=-x\)

\(\Leftrightarrow\frac{-11}{2}=x\)

Vậy \(x=\frac{-11}{2}\)

Bài 2:

a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)

       Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)

\(\Leftrightarrow x+\frac{19}{5}=0\)

\(\Leftrightarrow x=\frac{-19}{5}\)

\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)

\(\Leftrightarrow y+\frac{2018}{2019}=0\)

\(\Leftrightarrow y=\frac{-2018}{2019}\)

\(\Rightarrow+,\left|z-3\right|=0\)

\(\Leftrightarrow z-3=0\)

\(\Leftrightarrow z=3\)

Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)

b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)

Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow x\inℚ\)

\(\Rightarrow+,\left|2y+4\right|\ge0\)

\(\Rightarrow y\inℚ\)

\(\Rightarrow+,\left|z-5\right|\ge0\)

\(\Rightarrow z\inℚ\)

Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.

24 tháng 3 2020

234*(-26)+134*26

9 tháng 2 2020

giúp mình với

9 tháng 2 2020

\(x^n-x=x\left(x^{n-1}-1\right)\text{ Ta có:}0< x< 1\Rightarrow0< x^{n-1}< 1\Rightarrow x^{n-1}-1< 0\)

\(\Rightarrow x\left(x^{n-1}-1\right)< 0\Rightarrow x^n< x\text{ Ta có điều phải chứng minh}\)

16 tháng 11 2017

8908,7890,7890