K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

a/ Ta có : \(3y^2+12y+\left(4x^2+3x+5\right)=0\)

Xét \(\Delta'=6^2-3\left(4x^2+3x+5\right)=-12x^2-9x+21\)

Để pt trên có nghiệm thì \(\Delta'\ge0\Leftrightarrow-12x^2-9x+21\ge0\Leftrightarrow-\frac{7}{4}\le x\le1\)

Vì x là nghiệm nguyên nên \(0\le x\le1\)

Do đó x = 0 hoặc x = 1

Nếu x = 0 thì  \(y_1=\frac{-6-\sqrt{21}}{3}\) (loại) , \(y_2=\frac{-6+\sqrt{21}}{3}\) (loại)

Nếu x = 1 thì y = -2 (nhận)

Vậy (x;y) = (1;-2)

3 tháng 9 2016

Đọc là "đen-ta" hay còn gọi là biệt thức. Bạn học sâu hơn về tam thức bậc hai (sách SGK 9 tập hai) để hiểu rõ hơn :)

NV
23 tháng 7 2021

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

NV
23 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

10 tháng 12 2021

Tham khảo:

Nhưng có vẻ không đúng yêu cầu đề lắm :<

undefined

undefined

undefined

10 tháng 12 2021

\(\left(x^2-y^2\right)^2=4xy+1\)

<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)

<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)

<=> \(x^2+y^2=2xy+1\)

<=> \(\left(x-y\right)^2=1\)

<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)