K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2023

Lại có p>q>3 nên q=3k+1, 3k+2 ( k là stn và k>0 )

Loại q=3k+1 vì nếu q=3k+1 thì p=3(k+1) chia hết cho 3 là hợp số( vô lý)

Vậy q=3k+2 nên p=3(k+1)+1

Đặt k=2m, 2m+1

Nếu k=2m thì q=3(2m+1)+1. Mà 3(2m+1) là số lẻ nên q chẵn. Mà q là số nguyên tố và q>2 nên q lẻ ( vô lý)

Vậy k=2m+1

Suy ra \(q^3+p^3=18k^3+162k^2+180k+72\)

Dễ thấy \(180k+72⋮36\)

Cần cm \(18k^3+162k^2⋮36\)

Dễ thấy \(18k^3+162k^2\) chia hết cho 9 (1)

Vì m là số lẻ nên m chia 4 dư 1 hoặc 3

Xét 2 trường hợp suy ra \(18k^3+162k^2\) chia hết cho 4  (2)

Từ (1),(2) và 4 và 9 là 2 số nguyên tố cùng nhau

Suy ra \(18k^3+162k^2⋮36\) 

Vậy ta có điều phải chứng minh

 

 

29 tháng 3 2023

Từ đoạn Suy ra q3+p3=18k3+162k2+180k+72 mình viết nhầm m thành k :))))))))

7 tháng 3 2020

Ta có \(q\left(q^2-1\right)=q\left(q-1\right)\left(q+1\right)\)  zì đây là ba số tự nhiên liên tiếp 

=> \(q\left(q^2-1\right)⋮3\)

=>\(p\left(p-1\right)⋮3\)

=>\(p⋮3\)hoặc \(p-1⋮3\)

mà \(p\)là số nguyên tố

=>\(p=3\)

thay p=3 zô phương thức ban đầu ta được \(\left(q-2\right)\left(q^2+2q+3\right)=0=>q=2\)

zậy ..

7 tháng 3 2020

ミ★Hαċкεɾ ²к⁶★彡 Giari thích không rõ ràng nha, chúng ta cs p hoặc p-1 chia hết cho 3. Chứ có phải là p chia hết cho 3 đâu mà suy ra luôn được p = 3?? Vô lí nha !! Nếu thế thì bạn phảo xét từng TH, với p chia hết cho 3, và p-1 chia hết cho 3 nha !

25 tháng 2 2021

Ta có: \(\frac{xy+1}{x+y}\ge\frac{3y+1}{x+y}\ge\frac{3y+1}{2y}>\frac{3y}{2y}=\frac{3}{2}\)( mâu thuẫn với gt)

giả sử \(a\le2\Rightarrow a\in\left\{1;2\right\}\)

+ Với a=1 \(\Rightarrow M=\frac{y^3+1}{y^3+1}=1\)

+ Với a=2 \(\Rightarrow M=\frac{8y^3+1}{y^3+8}\)

Từ đk \(\frac{xy+1}{x+y}=\frac{2y+1}{y+2}< \frac{3}{2}\Rightarrow b< 4\)

=> \(b\in\left\{1;2;3\right\}\)

+ Với b=1 \(\Rightarrow M=\frac{9}{9}=1\)

+ Với  b=2 \(\Rightarrow M=\frac{8.8+1}{8+8}=\frac{65}{16}\)

+ vỚI b=3 \(\Rightarrow M=\frac{8.27+1}{27+8}=\frac{217}{35}\Leftrightarrow\hept{\begin{cases}a=2\\b=3\end{cases}}\) hoặc ngược lại.

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)