Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
=>3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1=-5;-1;1;5
=>n=-4;0;2;6
b,3n.1=3n
=>3n+1 chia hết cho 3n
=>1 chia hết cho 3n(vô lí)
vậy không có n
\(A=\dfrac{3\left(n-1\right)+5}{n-1}=3+\dfrac{5}{n-1}\in Z\\ \Leftrightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Leftrightarrow n\in\left\{-4;0;2;6\right\}\)
a) A= n+1/n-3
Để A có giá trị là 1 số nguyên thì
\(\left(n+1\right)⋮\left(n-3\right)\)
\(\Rightarrow\left(n-3+4\right)⋮\left(n-3\right)\)
mà \(\left(n-3\right)⋮\left(n-3\right)\)
nên \(4⋮\left(n-3\right)\)
=> n-3 là ước nguyên của 4
=> \(\left(n-3\right)\in\left\{1;-1;2;-2;4;-4\right\}\)
Tương ứng \(n\in\left\{4;2;5;1;7;-1\right\}\)
Vậy \(n\in\left\{4;2;5;1;7;-1\right\}\)
b) B= 3n+4/n-2
Để B có giá trị là một số nguyên thì
\(\left(3n+4\right)⋮\left(n-2\right)\)
\(\Rightarrow\left(3n-6+10\right)⋮\left(n-2\right)\)
\(\Rightarrow\left[3\left(n-2\right)+10\right]⋮\left(n-2\right)\)
mà \(3\left(n-2\right)⋮\left(n-2\right)\)
nên \(10⋮\left(n-2\right)\)
Làm tiếp như ý a)
Để \(P=\dfrac{3n+2}{n-1}\) là số nguyên thì:
\(3n+2⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow5⋮n-1\)
=> \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Ta có các trường hợp sau:
\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\)
Vậy khi \(n\in\left\{2;0;6;-4\right\}\) thì \(P=\dfrac{3n+2}{n-2}\) là số nguyên.
Ta có : \(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để P là một số nguyên
=> \(5⋮n-1\Leftrightarrow n-1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng sau
\(n-1\) | \(1\) | \(5\) | \(-5\) | \(-1\) |
\(n\) | \(2\) | \(6\) | \(0\) | \(-4\) |
Vậy để P là số nguyên thì \(n\in\left(2;6;0;-4\right)\)