Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3^a+1=(b+1)^2$
$\Rightarrow 3^a+1=b^2+2b+1$
$\Rightarrow 3^a=b^2+2b=b(b+2)$
Đặt $b=3^m, b+2=3^n$ với $m,n$ là hai số tự nhiên, $m+n=a$
Ta có:
$b=3^m, b+2=3^n$
$\Rightarrow 2=3^n-3^m$
Nếu $m,n$ cùng lớn hơn $0$ thì $3^n-3^m\vdots 3$. Mà $2\not\vdots 3$ nên loại
$\Rightarrow$ trong 2 số $m,n$ có ít nhất 1 số bằng $0$.
Mà $n>m$ nên $m=0$.
Khi đó:
$3^n-3^m=3^n-3^0=2\Rightarrow 3^n=3\Rightarrow n=1$
$\Rightarrow a=m+n=0+1=1$
$(b+1)^2=3^a+1=3^1+1=4$
$\Rightarrow b+1=2$
$\Rightarrow b=1$
Vậy.......
Theo đề bài a+b2⋮a2b−1
\(\Rightarrow\) ∃ k∈ N* : a+b2=k(a2b−1)
\(\Leftrightarrow\) a+k=b(ka2−b)
Đặt m=ka2−b (m\(\in\)Z) thì ta được a+k=mb
Mặt khác do a,k,b \(\in\) N* nên cho ta m\(\in\)N*
Từ đó ta có:
(m−1)(b−1)=mb−m−b+1=a+k−ka2+1=(a+1)(k−ka+1)
Vì m,b ∈ N* nên (m−1)(b−1) ≥ 0
\(\Rightarrow\) (a+1)(k−ka+1) ≥ 0 \(\Rightarrow\) (k−ka+1)≥ 0
\(\Rightarrow\) 1 ≥ k(a−1)
Lúc này vì k,a ∈ N* nên a−1 ≥ 0. Suy ra chỉ có thể xảy ra 2 trường hợp:
Trường hợp 1: k(a−1)=0 ⇒ a−1=0 hay a=1
Thay a=1 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=2 ⇒ b−1=1∨b−1=2 ⇒ b=2∨b=3
Trường hợp 2: k(a−1)=1 ⇒ k=a−1=1 hay k=1∧a=2
Thay k=1 và a=2 vào đẳng thức (m−1)(b−1)=(a+1)(k−ka+1) ta được
(m−1)(b−1)=0 ⇒ m−1=0∨b−1=0 ⇒ m=1∨b=1
Nếu như m=1 thì từ đẳng thức a+k=mb cho ta b=3
Vậy có 4 cặp số nguyên dương (a,b) thỏa yêu cầu bài toán là (1,2);(1,3);(2,1);(2,3)
Không mất tính tổng quát, giả sử \(1\le a\le b\).
\(2^a.2^b=2^{a+b}=2^a+2^b=2^a\left(1+2^{b-a}\right)\)
\(\Leftrightarrow2^b=1+2^{b-a}\)
có \(b\ge1\)nên \(2^b\)là số chẵn suy ra \(1+2^{b-a}\)là số chẵn suy ra \(2^{b-a}=1\Leftrightarrow b-a=0\Leftrightarrow a=b\).
Với \(a=b\): \(2^a+2^b=2^{a+b}\Leftrightarrow2.2^a=2^{2a}\Leftrightarrow a+1=2a\Leftrightarrow a=1\).
Vậy \(a=b=1\).
a và b có thể bằng bất cứ số nào lớn hơn 0
\(8a\left(a+b\right)+8=17b\)
\(\Leftrightarrow8a^2+8ab+8=17b\)
\(\Leftrightarrow8\left(a^2+1\right)=b\left(17-8a\right)\)
\(vì.a.là.số.nguyên.dương\Rightarrow17-8a\ne0\)
\(\Leftrightarrow\frac{8\left(a^2+1\right)}{17-8a}=b\)
ta có a,b là số nguyên dương
dễ thấy \(8\left(a^2+1\right)>0\)
vậy để b>0 => \(17-8a>0\)
\(\Leftrightarrow 0 < a < \frac{17}{8}\)
và vì a là số nguyên dương nên \(a\in\left\{1;2\right\}\)
với a = 2
\(8\cdot2\left(2+b\right)+8=17b\)
\(\Leftrightarrow40=b\) (nhận) => a=1;b=40
TH2 a = 1
\(8\left(1+b\right)+8=17b
\)
\(\Leftrightarrow16=9b\)
\(\Leftrightarrow b=\frac{16}{9}\left(l\right)\)
vậy pt có nghiệm a = 1; b = 40
\(8a\left(a+b\right)+8=17b\)
\(\Leftrightarrow8a^2+8ab+8=17b\)
\(\Leftrightarrow8\left(a^2+1\right)=b\left(17-8a\right)\)
\(vì.a.là.số.nguyên.dương\Rightarrow17-8a\ne0\)
\(\Leftrightarrow\frac{8\left(a^2+1\right)}{17-8a}=b\)
ta có a,b là số nguyên dương
dễ thấy \(8\left(a^2+1\right)>0\)
vậy để b>0 => \(17-8a>0\)
\(\Leftrightarrow 0 < a < \frac{17}{8}\)
và vì a là số nguyên dương nên \(a\in\left\{1;2\right\}\)
với a = 2
\(8\cdot2\left(2+b\right)+8=17b\)
\(\Leftrightarrow40=b\) (nhận) => a=1;b=40
TH2 a = 1
\(8\left(1+b\right)+8=17b
\)
\(\Leftrightarrow16=9b\)
\(\Leftrightarrow b=\frac{16}{9}\left(l\right)\)
vậy pt có nghiệm a = 1; b = 40