K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2022

Giải:

Vì a∈Z+

⇒5b=a3+3a2+5>a+3=5c

⇒5b>5c⇒b>c

⇒5b⋮5c

⇒a3+3a2+5⋮a+3

⇒a2(a+3)+5⋮a+3

Mà a2(a+3)⋮a+3

⇒5⋮a+3

⇒a+3∈Ư(5)

⇒a+3∈{±1;±5}(1)

Do a∈Z+⇒a+3≥4(2)

Từ (1) và (2)

⇒a+3=5

⇒a=5−3

⇒a=2(∗)

Thay (∗) vào biểu thức ta có:

23+3.22+5=5b⇔b=2

2+3=5c⇔c=1

Vậy: 

15 tháng 7 2018

\(a^3+3a^2+5=5^b\)

\(\Rightarrow a^2\left(a+3\right)+5=5^b\)

\(\Rightarrow a^2.5^c+5=5^b\)(vì a+3=5c)

\(\Rightarrow a^2.5^{c-1}+1=5^{b-1}\) (chia cả 2 vế cho 5)

=> c - 1 = 0 hoặc b - 1 = 0

+) b = 1, khi đó ko thoả mãn

+) c = 1 => a = 2 => b = 2

5 tháng 2 2019

Do \(a;b;c\in Z^+\Rightarrow5^b=a^3+3a^2+5>a+3=5^c\)

\(\Rightarrow5^b>5^c\Rightarrow b>c\)

\(a^3+3a^2+5=5^b\)

\(\Rightarrow a^2\left(a+3\right)+5=5^b\)

\(\Rightarrow a^2\cdot5^c+5=5^b\)

\(\Rightarrow5^b⋮5^c\)

\(\Rightarrow a^2\left(a+3\right)+5⋮a+3\)

\(\Rightarrow5⋮a+3\)

\(\Rightarrow a+3\in\left\{5,1,-1,-5\right\}\)

Mà \(a+b>3\Rightarrow a+3=5\)

\(\Rightarrow a=2\)

\(\Rightarrow b=2;c=1\)

7 tháng 1 2017

a=2 ; b=2 và c=1