K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

a) a.b= 3/5; b.c=4/5; a.c=3/4

b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30

c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c

hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng

18 tháng 3 2017

a) ab=3/5; bc=4/5; ca=3/4

=> (abc)2 = (3/4).(4/5).(3/4)=9/25

=>abc=3/5

Ta có: abc=3/5

         ab=3/5

=> c=1

Ta có: abc=3/5

          bc=4/5

=> a=3/4

Ta có: abc=3/5

          ca=3/4

=> b=4/5

Vậy a=3/4; b=4/5; c=1

5 tháng 7 2023

1) ab=2 (I); bc=3 (II); ca=54 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18

(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9

2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)

Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1

(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5

3) a(a+b+c)= -12 (I)

    b(a+b+c)= 18 (II)

    c(a+b+c)= 30 (III)

Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6

TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5

TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5

 

28 tháng 7 2017

a) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ca=\dfrac{3}{4}\)

\(\Leftrightarrow ab.bc.ca=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}\)

\(\Leftrightarrow a^2.b^2.c^2=\dfrac{9}{25}\)

\(\Leftrightarrow\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2=\left(-\dfrac{3}{5}\right)^2\)

+ Khi \(\left(abc\right)^2=\left(\dfrac{3}{5}\right)^2\Leftrightarrow abc=\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\\b=\dfrac{3}{5}:\dfrac{3}{4}=\dfrac{4}{5}\\c=\dfrac{3}{5}:\dfrac{3}{5}=1\end{matrix}\right.\)

+ Khi \(\left(abc\right)^2=\left(-\dfrac{3}{5}\right)^2\Leftrightarrow abc=-\dfrac{3}{5}\)

Vậy \(\left\{{}\begin{matrix}a=\left(-\dfrac{3}{5}\right):\dfrac{4}{5}=-\dfrac{3}{4}\\b=\left(-\dfrac{3}{5}\right):\dfrac{3}{4}=-\dfrac{4}{5}\\c=\left(-\dfrac{3}{5}\right):\dfrac{3}{5}=-1\end{matrix}\right.\)

b) \(a\left(a+b+c\right)=-12;b\left(a+b+c\right)=18;c\left(a+b+c\right)=30\)

\(\Leftrightarrow a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(-12\right)+18+30\)

\(\Leftrightarrow\left(a+b+c\right)\left(a+b+c\right)=36\)

\(\Leftrightarrow\left(a+b+c\right)^2=6^2=\left(-6\right)^2\)

+ Khi \(\left(a+b+c\right)^2=6^2\Leftrightarrow a+b+c=6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):6=-2\\b=18:6=3\\c=30:6=5\end{matrix}\right.\)

+ Khi \(\left(a+b+c\right)^2=\left(-6\right)^2\Leftrightarrow a+b+c=-6\)

Vậy \(\left\{{}\begin{matrix}a=\left(-12\right):\left(-6\right)=2\\b=18:\left(-6\right)=-3\\c=30:\left(-6\right)=-5\end{matrix}\right.\)

c) \(ab=c;bc=4a;ac=9b\)

Kiểm tra lại đề bài xem có thiếu điều kiện không.

28 tháng 7 2017

Cứ theo khẳng định của Nguyễn Thị Ngọc Linh thì đề c) không thiếu gì. Xin giải tiếp.

c) \(ab=c;bc=4a;ac=9b\)

\(\Leftrightarrow ab.bc.ac=c.4a.9b\)

\(\Leftrightarrow\left(abc\right)\left(abc\right)=36\left(abc\right)\)

\(\Leftrightarrow abc=36\)

+ Vì \(ab=c\Leftrightarrow cc=36\Leftrightarrow c^2=6^2=\left(-6\right)^2\)

+ Vì \(bc=4a\Leftrightarrow a.4a=36\Leftrightarrow4a^2=36\Leftrightarrow a^2=9=3^2=\left(-3\right)^2\)

+ Vì \(ac=9b\Leftrightarrow b.9b=36\Leftrightarrow9b^2=36\Leftrightarrow b^2=4=2^2=\left(-2\right)^2\)

Vậy \(\left\{{}\begin{matrix}a_1=3;a_2=-3\\b_1=2;b_2=-2\\c_1=6;c_2=-6\end{matrix}\right.\)

27 tháng 7 2020

Bài làm:

Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)

\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)

\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)

Thay vào ta tính được a và b

b,c tương tự a

27 tháng 7 2020

a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)

\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)

\(a.b.c=\frac{3}{5}\)

\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)

b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)

\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)

\(\Rightarrow\left(a+b+c\right)^2=36\)

\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)

Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5

Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5

c,ab=c => a=c/b (1) 

bc=4a => a=(bc)/4 (2) 

Từ (1) và (2) => c/b = (bc)/4 

<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2 

(*) Với b=2 thì 

(1) => a=c/2 <=> c=2a:

ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= 2*3 = 6 (thỏa) 

_Với a=-3 thì c= 2*-3 =-6 (thỏa) 

(*) Với b=-2 thì 

(1) => a=c/-2 <=> c=-2a 

Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3 

_ Với a=3 thì c= -2*3 = -6 (thỏa) 

_Với a=-3 thì c= -2*-3 =6 (thỏa) 

Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) } 

27 tháng 7 2016

a. ab=3/5;bc=4/5;ca=3/4

=>(abc)^2=9/25

=>abc=3/5

=> c=1;a=3/4;b=4/5

27 tháng 7 2016

b. a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30

=>(a+b+c)^2=36

=>a+b+c=6

=> a=-2;b=3;c=5