Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\left|n\right|+n=\left[{}\begin{matrix}2n\text{ với }n\ge0\\0\text{ với }n< 0\end{matrix}\right.\Rightarrow n⋮2\forall n\left(\circledast\right)\)
\(|x - y|+|y-z|+|z-t|+|t-\color{red}{x}|=2017\)
\(\Leftrightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z=2017\)
Từ \(\circledast\) ta có:
\(\left\{{}\begin{matrix}\left|x-y\right|+x-y⋮2\\\left|y-z\right|+y-z⋮2\\\left|z-t\right|+z-t⋮2\\\left|t-x\right|+t-x⋮2\end{matrix}\right.\)
\(\Rightarrow\left|x-y\right|+x-y+\left|y-z\right|+y-z+\left|z-t\right|+z-t+\left|t-z\right|+t-z⋮2\)
Mà \(2017⋮̸2\) nên không tìm được \(x,y,z,t \in \mathbb{Z}\) thỏa mãn.
\(\left|x-y\right|+\left|y+\frac{9}{25}\right|=0\)
Ta có : \(\hept{\begin{cases}\left|x-y\right|\ge0\\\left|y+\frac{9}{25}\right|\ge0\end{cases}}\Rightarrow\left|x-y\right|+\left|y+\frac{9}{25}\right|\ge0\forall x,y\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-y=0\\y=-\frac{9}{25}\end{cases}\Rightarrow}x=y=-\frac{9}{25}\)
Vậy giá trị của biểu thức = 0 khi x = y = -9/25
|3x-2y| ≥ 0
|2z-5y| ≥ 0
|xy+yz+zx-174| ≥ 0
=> |3x-2y|+|2z-5y|+|xy+yz+zx-174| ≥ 0
=> p ≥ 2017
vậy GTNN của p là 2017
Ta có :
\(\left|x-3\right|+2\ge2\)\(\Rightarrow\left(\left|x+3\right|+2\right)^2\ge4\)
\(\left|y+3\right|\ge0\)
\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge4+0+2017\)
\(\Rightarrow P\ge2017\)
Dấu \("="\)\(\Leftrightarrow\)\(\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\\left|y-3\right|=0\end{cases}}\)\(\)\(\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\end{cases}}\\y-3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\orbr{\begin{cases}\left|x-3\right|+2=2\\\left|x-3\right|+2=-2\left(L\right)\end{cases}}\\y-3=0\end{cases}}\)
https://goo.gl/BjYiDy