K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

học tốt nhé !

6 tháng 3 2023

2 nghiệp pt phải:

 (2m - 1)2-4(m2 - 1)≥0

Vì x1 là nghiệm nên

x21−(2m−1)x1+m2−1=0

<=> x12−(2m−1)x1+m2−1=0

<=>x12−2mx1+m2=x1+1

<=> 9m2=0 <=>m=0

#YQ

6 tháng 3 2023

9m2=0 là sao ạ

29 tháng 5 2023

Ptr có nghiệm `<=>\Delta' > 0`

   `<=>(-m)^2-2m+1 > 0`

  `<=>(m-1)^2 > 0<=>m-1 ne 0<=>m ne 1`

`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m),(x_1.x_2=c/a=2m-1):}`

Ta có: `(x_1 ^2-2mx_1 +3)(x_2 ^2-2mx_2 -2)=50`

`<=>[x_1 ^2-(x_1+x_2)x_1+3][x_2 ^2-(x_1+x_2)x_2 -2]=50`

`<=>(-x_1.x_2+3)(-x_1.x_2-2)=50`

`<=>(1-2m+3)(1-2m-2)=50`

`<=>(4-2m)(-1-2m)=50`

`<=>-4-8m+2m+4m^2=50`

`<=>4m^2-6m-54=0`

`<=>4m^2+12m-18m-54=0`

`<=>(m+3)(4m-18)=0<=>[(m=-3),(m=9/2):}`  (t/m)

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

Để PT có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2-1)>0\Leftrightarrow 2m+2>0\Leftrightarrow m>-1$

Áp dụng định lý Viet:

$x_1+x_2=2(m+1)$ và $x_1x_2=m^2-1$

Khi đó, để $x_1^2+x_2^2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=x_1x_2+8$

$\Leftrightarrow (x_1+x_2)^2=3x_1x_2+8$

$\Leftrightarrow 4(m+1)^2=3(m^2-1)+8$

$\Leftrightarrow m^2+8m-1=0$

$\Leftrightarrow m=-4\pm \sqrt{17}$. Vì $m>-1$ nên $m=-4+\sqrt{17}$

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

Δ=(m+1)^2-4(2m-8)

=m^2+2m+1-8m+32

=m^2-6m+33

=(m-3)^2+24>=24

=>Phương trình luôn có hai nghiệm pb

x1^2+x2^2+(x1-2)(x2-2)=11

=>(x1+x2)^2-2x1x2+x1x2-2(x1+x2)+4=11

=>(m+1)^2-(2m-8)-2(m+1)+4=11

=>m^2+2m+1-2m+8-2m-2-7=0

=>m^2-2m-8=0

=>(m-4)(m+2)=0

=>m=4 hoặc m=-2

31 tháng 12 2017

Phương trình x 2 – 2mx + 2m − 1 = 0 có a = 1  0 và  = 4 m 2 – 4 (2m – 1)

= 4 m 2 – 8 m + 4 = 4 ( m – 1 ) 2   ≥ 0 ;   ∀ m

Phương trình có hai nghiệm x 1 ;   x 2 với mọi m

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m x 1 . x 2 = 2 m − 1

Xét 

  x 1 2 + x 2 2 = x 1 + x 2 2 - 2 x 1 x 2 ⇔ 4 m 2 – 2 ( 2 m – 1 ) = 10

⇔ 4 m 2 – 4 m + 2 – 10 = 0 ⇔ 4 m 2   – 4 m – 8 = 0 ⇔ m 2 – m – 2 = 0

  m 2 – 2 m + m – 2 = 0 ⇔ m ( m – 2 ) + ( m – 2 ) = 0 ⇔ ( m + 1 ) ( m – 2 ) = 0

⇔ m = 2 m = − 1

Vậy m = 2 và m = −1 là các giá trị cần tìm

Đáp án: D

a) Ta có: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(2m-5\right)\)

\(=\left(2m-2\right)^2-4\left(2m-5\right)\)

\(=4m^2-8m+4-8m+20\)

\(=4m^2-16m+24\)

\(=4m^2-2\cdot2m\cdot4+16+8\)

\(=\left(2m-4\right)^2+8>0\forall m\)

Vậy: Phương trình (1) luôn có hai nghiệm phân biệt \(x_1;x_2\)