Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt đk ở đề bài là(*)
Vì x,y \(\in\) N* nên (x+y)^5 < 120y+3 < 120y+120x=120(x+y)
Ta có:
(x+y)^4 < 120 < 4^4
x+y < 4. Mà x+y > 2(vì x,y \(\in\) N*)
do đó:x+y=2 hoặc x+y=3
(1)x+y=2
=>x=y+1 thỏa mãn (*)
(2)x+y=3
=>x=1;y=2 hoặc x=2,y=1
x=1,y=1 thỏa mãn (*)
x=2,y=1 ko thỏa mãn (*)
Vậy x=1,y=1
và x=1,y=2
Bạn ấy làm đúng rồi
Mặc dù mình không biết nhưng mk nghĩ bạn ấy đã làm đúng
Quá xuất sắc
Do x,y bình đẳng như nhau,giả sử \(x\ge y\)
Khi đó:\(100=x^y+y^x\ge y^y+y^y=2y^y\)
\(\Rightarrow50\ge y^y\)
Với \(y>3\Rightarrow50\ge y^y>y^3\)
\(\Rightarrow4>\sqrt[3]{50}>y\)
\(\Rightarrow3< y< 4\left(KTM\right)\)
\(\Rightarrow y\le3\Rightarrow y\in\left\{1;2;3\right\}\)
Với \(y=1\)
\(\Rightarrow100=x^y+y^x=x+1^x=x+1\)
\(\Rightarrow x=99\left(TM\right)\)
Với \(y=2\)
\(\Rightarrow100=x^2+2^x\)
\(\Rightarrow2^x=100-x^2< 100\)
\(\Rightarrow x< 7\)
Mà x chẵn \(\Rightarrow x\in\left\{2;4;6\right\}\)
Thử vào thấy x=6 thỏa mãn.
Với \(y=3\)
\(\Rightarrow100=x^3+3^x\)
\(\Rightarrow x^3=100-3^x\)
\(\Rightarrow x< 5\)
Mà \(x\ge y\Rightarrow3\le x< 5\)
\(\Rightarrow x=3\left(h\right)x=4\)
Thử vào ta thấy không có x thỏa mãn.
Vậy các cặp số \(\left(x;y\right)\) cần tìm là:\(\left(99;1\right);\left(6;2\right)\) và các hoán vị của chúng
P/S:\(\left(h\right)\) là hoặc.
Ta có : 2 số x và y bình đẳng, không mất tính tổng quát
Các TH :
+ TH1: x = 1 => 1y + y1 = 100 => y + 1 = 100 => y = 99
Tìm được : x = 1 ; y = 99
+ TH2: x = 2 => 2y + y2 = 100 => 1 < y < 7 ( Nếu y = 1 thì lại rơi vào TH 1 )
Nếu : y = 6 => 26 + 62 = 100 ( T/m ) => Tìm đc x = 2; y = 6
y < 6 => 2y + y2 < 100 ( loại )
+ TH3 : x = 3 => 3y + y3 = 100 => 2 < y < 4
Nếu y = 3 => 33 + 33 = 54 < 100 ( loại )
+ TH4 : x \(\ge\)4 => 4y + y4 \(\ge\)44 + 44 = 512 > 100 ( y \(\ge\)4 vì nếu y < 4 sẽ rơi vào các TH trước )
Vậy ( x ; y ) = ( 1 ; 99 ) ; ( 99 ; 1 ) ; ( 2 ; 6 ) ; ( 6 ; 2 )
Lời giải:
$2x-xy+3y=9$
$\Rightarrow x(2-y)+3y=9$
$\Rightarrow x(2-y)-3(2-y)=3$
$\Rightarrow (2-y)(x-3)=3$
Do $x,y$ là số nguyên nên $2-y, x-3$ cũng là số nguyên. Mà tích của chúng bằng 3 nên ta có các TH sau:
TH1: $2-y=1, x-3=3\Rightarrow y=1, x=6$ (tm)
TH2: $2-y=-1, x-3=-3\Rightarrow y=3; x=0$ (loại do $x$ nguyên dương)
TH3: $2-y=3, x-3=1\Rightarrow y=-1$ (loại do $y$ nguyên dương)
TH4: $2-y=-3; x-3=-1\Rightarrow y=5; x=2$ (thỏa mãn)
đố vui
1 ơi + 2 ơi = bằng mấy ơi ?
đây là những câu đố vui sau những ngày học mệt nhọc
4 ơi??? hay 5 ơi, mjk hok bjk chịu thua nèk, pn ns đi Anh Nguyễn Lê Quan
\(\Rightarrow\frac{18}{6x}+\frac{2xy}{6x}=\frac{5x}{6x}\)
=> 2xy-5x = -18
=> x(2y-5)=-18
Mà x,y thuộc Z
=>
x; 2y-5 thuôc Ư(-18)={1;-1;2;-2;3;-3;6;-6;9;-9;18;-18}
Xét bảng ( bn tự xét )
KL: ..........................
Đề nên cho thêm là x khác 0
\(\frac{3}{x}+\frac{y}{3}=\frac{5}{6}\)
\(\Leftrightarrow\frac{18}{6x}+\frac{2xy}{6x}=\frac{5x}{6x}\)
\(\Leftrightarrow18+2xy=5x\)
\(\Leftrightarrow2xy-5x=-18\)
\(\Leftrightarrow x\left(2y-5\right)=-18\)
Để \(x,y\in Z\Leftrightarrow x;2y-5\inƯ\left(-18\right)=\left\{\pm1;\pm2;\pm3;\pm6;\pm18\right\}\)
Tìm được các cặp (x,y) : \(\left(1,2\right);\left(-1,-2\right);\left(3,4\right);\left(-3,1\right)\)