K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

21 tháng 5 2017

Câu 3 :

( x + 2 ) 2 = 4 - x 2

\(\Leftrightarrow\) ( x + 2 ) 2 = ( 2 - x ) ( 2 + x )

\(\Leftrightarrow\) ( x + 2 ) 2 - ( 2 - x ) ( 2 + x ) = 0

\(\Leftrightarrow\) ( x + 2 ) ( x + 2 - 2 + x ) = 0

\(\Leftrightarrow\) 2x . ( x + 2 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy phương trình có nghiệm x = 0 hoặc x = -2 .

21 tháng 5 2017

phynit bài này đúng không ạ

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

21 tháng 5 2017

câu 1.

P= 2(x+y)(x-y)+(x-y)^2+(x+y)^2-4y^2

P= (x+y+x-y)^2-(2y)^2

P=(2x-2y)(2x+2y)

P=4(x^2-y^2)

câu 2.

a, x^3-2x^2-4xy^2+x= x(x^2-2x+1)-4xy^2

                             =x(x-1)^2-4xy^2

                             =x(x-1-2y)(x-1+2y)

b, (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4)(x^2+5x+6)-24

Đặt x^2+5x+4= a

Lúc đó: (x+1)(x+2)(x+3)(x+4)-24= a(a+2)-24

                                              = a^2+2a-24

                                              =a^2+2a+1-25

                                              = (a+1)^2-5^2

                                              = (a+1-5)(a+1+5)

                                              = (a-4)(a+6)

mà ta đặt x^2+5x+4=a => (x+1)(x+2)(x+3)(x+4)-24= (x^2+5x+4-4)(x^2+5x+4+6)

                                                                         = (x^2+5x)(x^2+5x+10)

câu3. (x+2)^2= 4-x^2

=> (x+2)^2-4+x^2=0

=>. (x+2)^2-(2-x)(2+x)=0

=> (x+2)(x+2-2+x)=0

=> (x+2)2x=0

=> x+2=0 hoặc 2x=0

=> x=-2 hoặc x=0

21 tháng 5 2017

1)P=2(x^2-y^2)+x^2-2xy+y^2+x^2+2xy+y^2-4y^2=2x^2-2y^2+2x^2+2y^2-4y^2=4x^2-4y^2 .                      3) <=> x^2+4x+4-4+x^2=0

<=> 2x^2+4x=0      <=>2x(x+2)=0     <=>2x=0 hay x+2=0      <=>x=0 hay x=-2

23 tháng 10 2021

\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2

8 tháng 8 2017

(x+y)^2  =a^2

x^2 +2xy +y^2 =a^2

x^2+y^2 =a^2-2xy =a^2 -2b

x^3 +y^3 = (x+y)(x^2 -xy +y^2)

             =a(a^2-2b-b)

            =a(a^2-3b)

            =a^3- 3ab

(x^2 +y^2)^2=(a^2-2b)^2  ( cái này tính cho x^4 + y^4)

tương tự như câu đầu tiên 

x^5+ y^5 (cái đó mình không biết)

8 tháng 8 2017

sai con khi

24 tháng 9 2020

Bài 1.

A = x2 + 2xy + y2 = ( x + y )2 = ( -1 )2 = 1

B = x2 + y2 = ( x2 + 2xy + y2 ) - 2xy = ( x + y )2 - 2xy = (-1)2 - 2.(-12) = 1 + 24 = 25

C = x3 + 3xy( x + y ) + y3 = ( x3 + y3 ) + 3xy( x + y ) = ( x + y )( x2 - xy + y2 ) + 3xy( x + y )

                                                                                  = -1( 25 + 12 ) + 3.(-12).(-1)

                                                                                  = -37 + 36

                                                                                  = -1

D = x3 + y3 = ( x3 + 3x2y + 3xy2 + y3 ) - 3x2y - 3xy2 = ( x + y )3 - 3xy( x + y ) = (-1)3 - 3.(-12).(-1) = -1 - 36 = -37

24 tháng 9 2020

Bài 2.

M = 3( x2 + y2 ) - 2( x3 + y3 )

= 3( x2 + y2 ) - 2( x + y )( x2 - xy + y2 )

= 3( x2 + y2 ) - 2( x2 - xy + y2 )

= 3x2 + 3y2 - 2x2 + 2xy - 2y2

= x2 + 2xy + y2

= ( x + y )2 = 12 = 1

30 tháng 8 2018

Một năm trôi qua ~ . Giờ làm tiếp câu 1 :v

Câu a : \(x\left(x-y\right)+y\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)

Câu b : \(\left(x^2-xy+y^2\right)\left(x+y\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x^3+y^3\right)-\left(x^3-y^3\right)=x^3+y^3-x^3+y^3=2y^3\)

Câu c : \(7x\left(4y-x\right)+4y\left(y-7x\right)-\left(4y^2-7x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x^2=0\)

Câu d : \(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\)

\(=4xz+2xy+2yz+y^2+xy-xz-y^2+yz\)

\(3xy+3yz+3xz=3\left(xy+yz+xz\right)\)

25 tháng 9 2017

Lười làm câu 1 :

Câu 2 :

\(3x\left(12x-4\right)-9x\left(4x-3\right)=30\)

\(\Leftrightarrow36x^2-12x-36x^2+27x=30\)

\(\Leftrightarrow15x=30\)

\(\Rightarrow x=2\)